
Imperial College of Science, Technology and Medicine
Department of Electrical and Electronic Engineering

Towards Resource Efficient Vision Models

Roy Miles

Submitted in part fulfillment of the requirements for the degree of PhD in Electrical
and Electronic Engineering and the Diploma of Imperial College London

March 2024

Copyright Declaration

The copyright of this thesis rests with the author. Unless otherwise indicated, its contents are

licensed under a Creative Commons Attribution 4.0 International Licence (CC BY).

Under this licence, you may copy and redistribute the material in any medium or format for

both commercial and non-commercial purposes. You may also create and distribute modified

versions of the work. This on the condition that you credit the author.

When reusing or sharing this work, ensure you make the licence terms clear to others by

naming the licence and linking to the licence text. Where a work has been adapted, you should

indicate that the work has been changed and describe those changes.

Please seek permission from the copyright holder for uses of this work that are not included in

this licence or permitted under UK Copyright Law.

Statement of Originality

I certify that this thesis entitled ”Towards Resource Efficient Vision Models using Knowledge

Distillation and Pruning” is my original work. I assert that, except where acknowledged, the

material contained herein is the result of my own efforts and has not been submitted in whole

or in part for any other degree at any university or institution.

Contents

Abstract 1

Acknowledgements 3

1 Introduction 4

1.1 Network Pruning . 6

1.1.1 Unstructured pruning . 6

1.1.2 Structured pruning . 8

1.2 Weight Quantisation . 9

1.3 Low-rank factorization . 9

1.4 Knowledge Distillation . 11

1.5 Thesis Outline . 13

2 Compressing Local Descriptor Models 16

2.1 Introduction . 16

2.2 Related Work . 18

2.3 Compressed Descriptor Model . 19

1

2.4 Experimental results . 22

2.5 Conclusions . 25

2.6 Supplementary . 26

2.6.1 Compression ratio . 26

2.6.2 Computational cost . 27

3 Reconstructing Pruned Filters using Cheap Spatial Transformations 29

3.1 Introduction . 29

3.1.1 Related work . 31

3.2 Method . 32

3.2.1 Constructing diverse convolutional filters. 33

3.2.2 Using pruning to select the filter templates. 34

3.2.3 Performance and efficient implementations. 36

3.2.4 Channel connectivity and feature compression. 36

3.2.5 Computational cost and parameter efficiency. 38

3.3 Experiments . 40

3.3.1 Experimental results on CIFAR-10 . 40

3.3.2 Experimental results on ImageNet . 41

3.3.3 Ablation experiments . 42

3.4 Conclusion and Future work . 44

4 Cascaded Channel Pruning using Hierarchical Self-Distillation 45

4.1 Introduction . 45

4.2 Related Work . 47

4.3 Method . 49

4.4 Experiments . 54

4.5 Ablation studies . 58

4.6 Conclusion . 59

4.7 Supplementary . 59

5 Information Theoretic Representation Distillation 63

5.1 Introduction . 63

5.2 Related Work . 65

5.3 Preliminaries . 67

5.4 Information Theoretic Loss Functions . 70

5.5 Experiments . 74

5.6 Discussion . 81

5.7 Conclusion . 82

5.8 Supplementary . 82

5.8.1 Mutual Information Loss . 82

5.8.2 Correlation Loss . 83

6 Understanding the Role of the Projector in Knowledge Distillation 89

6.1 Introduction . 90

6.2 Related Work . 91

6.3 Understanding the Role of the Projector . 93

6.4 Benchmark Evaluation . 100

6.4.1 Classification on CIFAR100 and ImageNet 100

6.4.2 Data efficient training for transformers 101

6.4.3 Object Detection on COCO . 104

6.5 Conclusion . 105

6.6 Supplementary Material . 106

6.6.1 Measure of translational equivariance . 106

6.6.2 Few-shot distillation experiments . 107

6.6.3 Model Architectures . 108

7 Conclusion 110

7.1 Summary of Contributions . 110

7.2 Limitations . 111

7.3 Future Work . 111

7.3.1 Data-Efficient Training . 111

7.3.2 Multi-Modality Models . 112

Bibliography 112

List of Figures

1.1 The evolution of the winning entries on the ImageNet Large Scale Visual Recog-

nition Challenge from 2010 to 2015 [133]. These state-of-the-art models are

becoming increasingly more computationally and memory intensive, which has

limited their deployment on resource constrained devices. 5

1.2 Various schemes have been proposed for pruning the convolutional weights in

a CNN. Generally speaking these schemes can be categorised into unstructured

and structured pruning, whereby structured pruning preserves the underlying ar-

chitecture and enables the layer to remain efficient on standard consumer hardware. 9

1.3 Tensor decomposition can be graphically expressed using tensor networks. Above

shows two common decompositions of a 4-way convolutional weight tensor W

with a receptive field size of Kh ×Kw, input depth C and output depth N 10

1.4 Knowledge distillation can be broadly categorised into logit, representation, and

ensemble methods. In the output space, the metric is already defined from the

downstream task objective, however, for intermediate representations heuristics

measures must be adopted. Constructing Gram G, or correlation C matrices

has been shown to effectively extract the structural information needed to distill

these intermediate representations. 11

5

2.1 The proposed Convolutional-Depthwise-Pointwise (CDP) layer partitions the in-

put tensor across the depth. Most of the computational resources are then re-

served for only a subset of the input features, while the rest use an efficient

depth-wise convolution. The resulting features are then concatenated and ag-

gregated using a pointwise convolution. 17

2.2 Depthwise separable convolution (left) and the Tucker decomposition applied to

a convolutional layer (right) [88]. 19

2.3 Example of the convolutional weight slices W [:, :, i, j] from the pre-trained Hard-

Net++ model for layers 6 and 7, Where i, j is a given spatial coordinate in the

receptive field. Note that the columns correspond to a given input channel index

and the weights are scaled to be in the range [0, 255]. 20

3.1 Constructing more convolutional filters using cheap spatial transformations. (a)

Original convolutional layer. (b) Depth-wise separable layers, which fully de-

couple the spatial and depthwise aggregation of features. (c) Proposed layer

expressed new filters as spatial transformations of a smaller set of templates. . . 30

3.2 Too few templates can overly compress the input features. We propose to intro-

duce a group parameter to naturally balance the expressiveness of the both the

template and transformation stages. 34

3.3 Visualising learned transformations for a given layer. (left) original learned fil-

ters. (middle) expressive filters using affine template transformations. (right)

pruning filters. Both the vanilla pruned layer and the decomposed layers use a

pruning rate of 0.7. Each column represents a filter for a given output channel

and black pixels represent zero entries. 34

3.4 Comparison with a pruned baseline and the importance of which pruning heuris-

tic. (left) Performance of a VGG16 network trained using affine (with) and

scalar (without) spatial transformations with the same training methodology.

(right) show the performance trade-off at different pruning rates using both a

magnitude-based and a gradient-based saliency. 35

3.5 Importance of channel connectivity and the group extension. (left) Using more

groups enables a smaller bottleneck ratio, which improves the top-end accuracy.

(right) shows that increasing the minimum number of templates also reduces

feature compression but at a much larger overall cost. 37

3.6 Comparing the pruning rates of each layer using different saliency measures. We

see that a magnitude based (MAG) criterion exhibits a more uniform pruning

rate than gradient based measures (FO). 40

3.7 Latency of the proposed decomposition with an efficient implementation. (left)

Compute time of an original VGG16 network with and without the decomposi-

tion at various pruning rates. (right) Cumulative contribution of each operation

on the overall on-device compute time. 44

4.1 Proposed hierarchical self-distillation (HSD) strategy for channel pruning. Each

of the models are jointly trained with shared convolutional weights but with

independent binary masks, batch normalisation layers, and classification layers.

The lesser constrained models provide knowledge distillation and importance

score gradients down the hierarchy. The frozen teacher for model TN has been

omitted for clarity. 47

4.2 Left: Top-1 accuracy’s of each model across the joint training step and the fine-

tuning step. The training consists of one student T0 and 3 TA’s that are trained

on the CIFAR10 dataset. Right: Accuracy and performance comparisons on the

CIFAR100 dataset using the MobileNetV1 model. 54

4.3 Evaluation of the computational complexity (left) and the number of parameters

(right) for a student model with a varying number of teaching assistants. Each

data point on the graph is ordered according to their pre-defined filter-pruning

ratio using the modified VGG16 architecture on the CIFAR10 dataset. 58

4.4 The layer-wise pruning for a student and two TA models trained using cascaded

pruning. From left to right are models T0, T1, and T2 respectively. Each TA uses

the VGG16 architecture and is jointly trained on the CIFAR10 dataset. 60

5.1 Information theoretic representation distillation (ITRD) involves two distinct

losses, namely a correlation loss and a mutual information loss. The former

loss maximises the correlation between the student and teacher, while the latter

maximises a quantity resembling the mutual information that aims to transfer

the intra-batch sample similarity. 64

5.2 Top-1 Accuracy on ImageNet v.s. training efficiency with a ResNet-18 as the

student and a pre-trained ResNet-34 as the teacher. For CRCD, the training

efficiency was evaluated using the authors unofficial implementation, while this

accuracy is reported in their paper. 77

5.3 Accuracy (%) when varying both the correlation loss (left) and mutual informa-

tion loss (right) weightings. 78

5.4 Accuracy (%) when varying both the correlation loss (left) and mutual informa-

tion loss (right) weightings. 85

5.5 Training epochs vs validation accuracy for VGG13→VGG8 CIFAR 100 distil-

lation. Zoomed-in regions show that our method converges faster to a higher

accuracy. 87

6.1 Proposed feature distillation pipeline using three distinct components: linear

projection (a), batch norm (b), and a LogSum distance (c). We provide an

interpretable explanation for each each of these three components, which results

in a very cheap and effective recipe for distillation. 92

6.2 Evolution of singular values of the projection weights Wp under three different

representation normalisation schemes. The student is a Resnet-18, while the

teacher is a ResNet-50. The three curves shows the evolution of singular values

for the projector weights when the representations undergo no normalisation, L2

normalisation, and batch norm respectively. 93

6.3 Correlation between input-output features using different projector architectures.

All projector architectures considered will gradually decorrelate the input-output

features. Although this decorrelation is attributed to the layer removing irrele-

vant information, it can degrade the efficacy of distilling through to the student

backbone. 95

List of Tables

2.1 The CDP SuperPoint variants are able to achieve significant model compression

with minimal degradation against the related detector and descriptor perfor-

mance metrics. The computational complexity Ops. is measured in GFLOPs,

and it is the contribution of the VGG16 backbone and the separate detector/de-

scriptor heads. 23

2.2 Comparison of using depthwise-separable layers, Tucker decomposition, and a

proposed scheme for combining the two (TDW). The number(s) in the braces

indicates the layers replaced. The image matching and patch retrieval accuracy

is evaluated with mean Average Precision (mAP). 23

2.3 Applying different depthwise offsets for the HardNet model with CDP layers.

The results are evaluated on the HPatches benchmark and averaged over the

Easy, Hard, and Tough distributions. 24

3.1 Comparison to other pruning methods on CIFAR10. Each model is trained using

a magnitude based measure for selecting the filter templates, number of groups

= 2, and with a minimum of 8 template filters per layer to avoid catastrophic

pruning. 41

3.2 Comparison to other pruning methods on ImageNet-1K. Our model is trained

from random initialisation and with a simple magnitude based criterion. Using

number of groups = 2 and with a minimum of 32 templates per layer. 42

10

3.3 Ablating the family of transformations. Increasing the expressivity of transfor-

mations has a small improvement in performance, suggesting that most of the

network capacity is reserved for depthwise feature aggregation. 43

4.1 Comparison to other filter-level pruning methods on the CIFAR10 benchmark

and with the VGG16 architecture. For each model, the drop in accuracy is with

reference to their own baseline. 56

4.2 Top-1 Accuracy and pruning ratios on the ImageNet2012 validation split using

the ResNet50 model. The accuracy drops are reported in comparison to their

corresponding baseline. The calculations for these baseline performance metrics

are covered in the supplementary materials. 57

4.3 Performance statistics for the ResNet50 architecture on the ImageNet2012 dataset. 60

4.4 Pruning % in each layer as a result of cascaded pruning on the CIFAR10 dataset

and with the VGG16 architecture at varying filter-pruning ratios. The last two

layers (13 & 14) are the two dense classification layers which are not masked. . . 61

4.5 Accuracy and performance metrics for two efficient VGG16 variants trained from

random initialisation on the CIFAR10 dataset. Group-g indicates the use of

group convolutions with g groups, while Standard-s uses s% width scaling for

all the convolutional layers. 61

5.1 CIFAR-100 test accuracy (%) of student networks trained with a number of

distillation methods. The best results are highlighted in bold, while the second

best results are underlined. The mean and standard deviation was estimated over

3 runs. Same-architecture transfer experiments are highlighted in blue, whereas

cross-architectural transfer is shown in red. 75

5.2 Relative performance improvement (averaged over all architecture pairs in ta-

ble 5.1) of the correlation and mutual information based losses against Re-

viewKD, WCoRD and Lcorr only. 76

5.3 Accuracy (%) when varying α in the correlation loss for CIFAR-100 ResNet50→

MobileNetV2 distillation. 78

5.4 Transferability of the representations from CIFAR-100 to STL-10 and TinyIma-

geNet. Only the linear classifier heads of each model are fine-tuned on the target

datasets. The top-1 classification accuracies are reported (%). 79

5.5 Performance comparison with the state-of-the-art on CIFAR-10 for binary net-

works. All models, except full precision, use a bit length of 2 for the weights and

activations. 80

5.6 Question Answering on SQuAD 1.1. The teacher architecture, BERT, contains

12 layers, whereas the students, T6 and T3, follow the same architecture as

BERT but with 6 and 3 layers respectively. 81

5.7 Accuracy (%) with and without the log2 data transformation. The experiments

were performed for CIFAR-100 ResNet50→ MobileNetV2 distillation. 83

5.8 Accuracy (%) with the RBF kernel for the Lgram with different kernel sizes

σ. The experiments were performed for CIFAR-100 ResNet50→ MobileNetV2

distillation. 83

5.9 Accuracy (%) when varying α in the correlation loss for CIFAR-100 ResNet50→

MobileNetV2 distillation. 85

5.10 Relative overhead in terms of memory and training time against main competing

distillation methods on ImageNet. Training time used a variable batch size to fit

a pre-defined memory limit, while the memory experiments were using a fixed

batch size. 87

6.1 Normalisation ablation for distillation across a range of architecture pairs on an

ImageNet-1K 20% subset. Although distillation improves performance with a

variety of normalisation schemes, we find batch normalisation is consistently the

most effective. 98

6.2 Ablating the importance of α. Distillation is generally robust for various values

of α, but consistently optimal in range 4-5 across various architecture pairs. . . . 98

6.3 LogSum ablation across various architecture pairs. Left: 20% subset. Right:

Full ImageNet. The soft maximum function provides consistent improvement

across both the CNN→CNN and ViT→CNN distillation settings. 99

6.4 KD between Similar and Different Architectures. Top-1 accuracy (%) on CI-

FAR100. Bold is used to denote the best results. All reported models are trained

using pairs of augmented images. Those reported in the top box use RandAug-

ment [43] strategy, while those in the bottom box use pre-defined rotations, as

used in SSKD. † denotes reproduced results in a new augmentation setting using

the authors provided code. 99

6.5 Data-efficient training of transformers and CNNs on the ImageNet-1K dataset.

Unless specified, all student models are trained for 300 epochs. 103

6.6 Top-1 and Top-5 error rates (%) on ImageNet. ResNet18 as student, ResNet34

as teacher. 103

6.7 Measure of translational equivariance of a DeiT-S transformer model trained

with and without distillation. These results confirm that distillation can transfer

explicit inductive biases from the teacher. 104

6.8 Object detection on COCO. (top) We report the standard COCO metric of mAP

averaged over IOU thresholds in [0.5 : 0.05 : 0.95] along with the standard PAS-

CAL VOC’s metric, which is the average mAP@0.5. (bottom) For the R-CNN

results, we report the mAP and AP50 metrics to enable a consistent comparison

with ReviewKD. 105

6.9 Ablating the importance in the choice of metric function using a ResNet34 and

a ResNet18 student on the ImageNet dataset. The loss modifications are high-

lighted in red. 106

Abstract

This PhD thesis focuses on improving the efficiency of deep neural networks for computer vi-

sion tasks by employing two key techniques: distillation and pruning. Distillation involves

training a smaller network to mimic the behavior of a larger, more complex network, thereby

reducing the number of parameters required for accurate inference, reduce the computational

complexity, and, in some cases, improve the data-efficiency. Pruning, on the other hand, is

typically a post-processing technique that involves removing redundant parameters from the

trained network to further reduce its size and computational requirements. This thesis explores

various approaches in combining these techniques for enhancing the efficiency of vision models

by incorporating domain knowledge and designing novel distillation and pruning techniques.

Some of the work presented here also touches upon an orthogonal direction, known as tensor de-

composition, which parameterise the weights in a more compact and efficient manner. Overall,

this thesis contributes to the development of more efficient and practical deep learning models

for computer vision applications. Some examples of these applications may be autonomous

driving, surveillance, and augmented virtual reality, but the main emphasis being deploying

these models on resource constrained devices, such as mobile phones. The results presented

also show various insights into how these efficient models can be designed and trained, thus

incorporating all the components of a standard machine learning pipeline, from the architecture

design through to the deployment on device.

1

2

Acknowledgements

I would like to express my sincere gratitude to my supervisor, Krystian Mikolajczyk, for their

guidance and encouragement throughout the course of this research project. Their invaluable

insights and expertise have been instrumental in shaping my work and helping me to grow as

a researcher.

I am deeply grateful to all of my colleagues in the MatchLab group for creating a supportive

and intellectually stimulating environment. In particular, I would like to thank them for their

helpful discussions and for their friendship.

Finally, I would like to express my heartfelt thanks to my family and friends for their unwavering

support and encouragement. This achievement would not have been possible without their love

and encouragement.

3

Chapter 1

Introduction

Over the past few decades, the field of machine learning has witnessed remarkable progress

and growth, with numerous algorithms and models developed to tackle complex problems in

various domains. One area where machine learning has made significant strides is computer

vision, which aims to enable computers to interpret and understand the visual world. This

thesis focuses on deep learning, a subfield of machine learning, and its immense success in solv-

ing complex visual tasks that were once considered unattainable for computers. Deep learning,

inspired by the structure and function of the human brain, refers to a class of artificial neural

networks (ANNs) with multiple hidden layers. This architecture allows deep learning models to

automatically learn hierarchical features from raw input data, making them particularly adept

at handling high-dimensional data such as images. In recent years, deep learning has consis-

tently outperformed traditional machine learning algorithms in various computer vision tasks,

including image classification [68], object detection [148], semantic segmentation [152, 90], and

scene understanding [41]. The introduction of Convolutional Neural Networks (CNNs) has been

a key factor in the success of deep learning in computer vision. CNNs exploit the spatial rela-

tionships within images by employing convolutional layers, which apply filters to local regions of

the input data. This unique structure allows CNNs to learn robust and discriminative features

that can generalize well to unseen data. In addition, advances in hardware, particularly Graph-

ics Processing Units (GPUs), have facilitated the training of large-scale deep learning models on

4

Figure 1.1: The evolution of the winning entries on the ImageNet Large Scale Visual Recognition
Challenge from 2010 to 2015 [133]. These state-of-the-art models are becoming increasingly more
computationally and memory intensive, which has limited their deployment on resource constrained
devices.

large datasets [155, 132, 89, 194], further propelling their performance. Deep learning’s success

in computer vision has led to numerous practical applications in various industries, including

healthcare, automotive, entertainment, and security. For instance, deep learning models are

now capable of detecting diseases in medical images with high accuracy and aiding doctors in

diagnosing patients more efficiently. Similarly, the automotive industry has benefited from the

advancements in object detection and scene understanding for the development of autonomous

vehicles.

Figure 1.1 shows the early trend of model complexity over the years on the popular ImageNet

image classification task. In very recent years, we have now seen models exceed a billion, or even

a trillion, parameters and this rate of growth has not been matched by the compute available

on mobile phones. Fortunately, compressing deep learning models is an active research area

with the goal of making it possible to deploy these powerful machine learning models on devices

with limited computational and storage resources. Specific examples of these devices can be

mobile phones or embedded devices for Internet of Things (IoT) applications. However, the

limitations of these models is not only restricted to the latency and memory, but also the power

consumption. More specifically, a smaller model will typically incur a much lower average power

consumption and thus prolong the devices battery life. Another motivation for this research

is with regards to data privacy. In some cases, it may not be practical or desirable to send

5

sensitive data to a remote server for processing. By compressing the model and deploying it on

the device itself, it is possible to perform the computation locally, which can help protect the

privacy of the data. In this chapter, we introduce the current trend of deep learning research

and its difficulty in aligning with the aforementioned objectives and their constraints. Following

this we outline some common orthogonal research areas for approaching this task through either

improving the training procedure or addressing and removing the emerging redundancy of the

trained models. This chapter provides a general overview of the field of pruning, low-rank

decomposition, quantisation, and knowledge distillation. The more concise and contextually

relevant discussions are provided at the start of each chapter.

1.1 Network Pruning

Most deep learning models benefit from training in the highly over-parameterised regime [92,

68]. Through a dense sampling of the data, these models can then learn to smoothly interpolate

over the low-dimensional latent manifold for which the data inherently lies [52]. Unfortunately,

this regime leads to very large models that are incompatible with embedded devices, however,

it does suggest significant parameter redundancy. This redundancy can be explicitly exploited

as a post processing technique, described as pruning.

Pruning involves removing unnecessary connections or parameters from the model. Setting

the weights to zero is an equivalent action to pruning said weight and is what is commonly

adopted in practice through learning a binary mask over the weights. A highly pruned network

is described as having a high level of weight sparsity and these networks should then be small

enough to fit on a embedded device, such as a mobile phone.

1.1.1 Unstructured pruning

Unstructured pruning aims to remove individual connections or neurons based on their impor-

tance. It is often described as a fine-grain pruning strategy that can achieve very high levels of

6

sparsity. However, this sparsity does not often translate to the same reduction in latency due

to the need for sparse hardware or software libraries. Unstructured pruning can be used alone

or in combination with other techniques, such as weight sharing or quantization, to further

compress and optimize the model.

Sparsity inducing regularization and iterative pruning. A natural approach to induce

this sparsity among weights is to restrict their magnitude using some sparsity inducing reg-

ularization term during training. One example is the l0 norm, which restricts the number of

non-zero weights in the network [111]. However, it is not commonly used as it lacks convexity

and is non-differentiable. The l1 norm also induces sparsity in the weights but has the benefit

of being convex and being much more computationally efficient. In practise, it is very useful

to target specific levels of sparsity to meet pre-defined resource constraints, however, this is

difficult to enforce using regularisation losses alone. This has led to the development of iter-

ative pruning/fine-tuning pipelines coupled with some heuristic measures for the saliency of

weights [93]. At each pruning step, those weights with a low saliency are stripped from the

network and the drop in accuracy is recovered through the subsequent fine-tuning. This line

of research is very tightly coupled with the lottery ticket hypothesis, which is discussed in the

next section.

Lottery ticket hypothesis. The lottery ticket hypothesis (LTH) suggests that neural net-

works contain small, sub-networks that can be trained in isolation to achieve high accuracy

on a given task [172]. When a neural network is randomly initialized, there are some sub-

networks, or ”winning tickets”, that are capable of achieving high accuracy on a given task.

These winning tickets can be identified and trained in isolation using iterative unstructured

pruning techniques, such as magnitude pruning.

Several studies have confirmed the existence of winning tickets and the effectiveness of the

lottery ticket hypothesis. Unfortunately, its extension to larger models and larger datasets is

difficult as a result of its connection with the stability of linear modes and SGD noise [54].

More concretely, this work has suggested that an earlier checkpoint can be used in favour of

the original initialisation to ensure stability in the LTH procedure. Other works have provided

7

additional insights into the underlying pruning pipeline [215], transferring tickets between mod-

els [32], or even learning random weight subnetworks that can generalise well. Although the

LTH is theoretically interesting, its motivation in deploying small models on mobile devices is

limited due to the inherent sparse operations needed for inference as a result of the subnetworks

being derived from unstructured pruning techniques. However, the LTH is still an active area

of research, with many open questions and opportunities for further investigation.

1.1.2 Structured pruning

Structured pruning attempts to alleviate the practical shortcoming of unstructured pruning.

By sacrificing some degree of sparsity, we can ensure that the pruned model can still be run

efficiently on standard GPU hardware. This works in practise because GPUs are optimised for

dense matrix multiplications and, as an example, removing entire filters is equivalent to simply

reducing the number of rows/columns for this operation. However, in the unstructured setting,

the model would need to to keep track of all the zeros and perform some form of selective

computation, which requires a lot of expensive memory movement operations. Although sparse

inference is an active field of research both in the hardware and software domain, it has yet to

make a strong impact in the wider or commercial setting.

Filter pruning involves the removal of entire convolutional filters (see figure 1.2). This pruning

strategy preserves the underlying architecture, thus enabling the use of standard convolution

operations to be maintained. Similarly for unstructured pruning, the filters can be ranked

based on some heuristic criteria such as the magnitude [95], geometric median [69], or the

batch statistics [135]. Liu et al. [109] observe some limitations in the iterative pruning and

fine-tuning procedure, especially when choosing to prune filters. They find that re-training

the pruned network from scratch can yield comparable or superior performance than doing

any iterative pruning and fine-tuning. Although it is difficult to find this subnetwork without

adopting any iterative pruning and fine-tuning, it has opened lots of new research directions,

such as zero-shot and few-shot pruning [30]. We direct the reader to [104, 98] for a thorough

survey on the state of pruning and its various extensions.

8

unstructured pruning

input-dim

output-dim

filter pruning

Figure 1.2: Various schemes have been proposed for pruning the convolutional weights in a CNN.
Generally speaking these schemes can be categorised into unstructured and structured pruning,
whereby structured pruning preserves the underlying architecture and enables the layer to remain
efficient on standard consumer hardware.

1.2 Weight Quantisation

Quantization involves reducing the number of bits used to represent the model weights and

activations. This can be done by mapping the original values to a smaller set of discrete values,

such as 8-bit integers or binary values. Quantization can significantly reduce the model size

and the amount of memory required to store the model, but it can also degrade the model’s

performance when stretched to very low bit-widths.

Binary quantisation is the most extreme quantisation scheme, whereby the weights are re-

duced to two values (typically 0 or 1). In this setting the convolutional layers can be imple-

mented through simple logic and binary operations, such as XNOR and pop-count [147, 22, 183]

which can be very efficiently executed on CPUs and FPGAs. Similarly, AdderNet [26] propose

a surrogate template matching operation using additions only [26]. In our presented work on

information-theoretic representation distillation [123] we provide an additional experiment on

a standard binary quantisation benchmark. We find that our proposed distillation loss couples

most favourably with SoTA binary quantisation than other distillation method, and in doing

so sheds light to a new SoTA for a binary ResNet-18 on CIFAR10.

1.3 Low-rank factorization

Low-rank factorization involves approximating the model weights with a composition of low-

rank tensors. This factorisation can reduce the total number of parameters and can improve

9

original weight tensor
CP decomposition

depthwise-separable

Figure 1.3: Tensor decomposition can be graphically expressed using tensor networks. Above shows
two common decompositions of a 4-way convolutional weight tensor W with a receptive field size of
Kh ×Kw, input depth C and output depth N .

the computational complexity for inference. Historically, this problem can be approached by

flattening dimensions and applying techniques such as singular value decomposition (SVD) or

matrix factorization [130]. Unfortunately, this flattening operation destroys a lot of the struc-

tural information and complex interactions between dimensions [161]. This has motivated the

use of multilinear algebra to provide more structurally rich decompositions of the weights. This

also gives rise to the use of tensor networks, which provide a graphical framework for multilin-

ear decomposition, and has shown promising results [186, 134]. However, finding the low-rank

decomposition of a tensor (order ≥ 3) is inherently an NP-hard problem and even finding an

optimal low-rank approximation is ill-posed [163]. This is why iterative methods are com-

monly used that minimize the reconstruction error under an Lp norm. EinConv [64] proposed

to explore the space of convolutional weight decomposition using neural architecture search

techniques. They observed that the heuristically derived depthwise-separable convolutions [27]

performed the best. These depthwise-separable convolutions have since been extended by ad-

dressing the increased cost of the pointwise convolution [115, 166]. Our work on the CDP layer

also addresses this problem on the task of descriptor learning. We graphically show a select

few tensor decompositions of convolutional weights in figure 1.3, but direct the reader to [11]

for a more comprehensive study on this topic and its application in deep learning in general.

More recently, concepts from this field of tensor decomposition have been modified and applied

to vision transformers with a lot of success [38, 190]. This is currently a very open and active

field of research.

10

On a related thread, geometric deep learning [20, 21] describes a general perspective of deep

learning through the lens of data symmetries. We have described how tensor decomposition

provides a framework for parameterising layer weights, and this parameterising can naturally

enforce these symmetries into the architecture. Later in this thesis we present a low-rank

decomposition that couples the construction of convolutional filters with learned group actions

in this way. By combining this decomposition with pruning, we are then able to design very

small and efficient networks.

1.4 Knowledge Distillation

Knowledge distillation involves training a smaller model to mimic the behavior of a larger, pre-

trained model. Historically, the smaller model is trained to produce outputs that are similar to

the larger model when given the same input. However, recent works have shown that distilled

models are not always in agreement with the teacher, thus the confounding factors contributing

to the improved generalisation of the student is an active area of research.

Figure 1.4: Knowledge distillation can be broadly categorised into logit, representation, and ensemble
methods. In the output space, the metric is already defined from the downstream task objective,
however, for intermediate representations heuristics measures must be adopted. Constructing Gram
G, or correlation C matrices has been shown to effectively extract the structural information needed
to distill these intermediate representations.

Logit Distillation initially opened up the field of knowledge distillation using an image classifi-

cation task. The teacher’s predictions are used as pseudo-ground truth labels for the student [72]

11

in addition to a temperature term τ for softening the probabilities. The intuition is that the

student can then learn the correlation between classes, which is not available in the ground

truth one-hot encoded labels. This additional knowledge is described as ”dark knowledge”.

Decoupled Knowledge Distillation [213] is an example of work that has improved this general

framework through decoupling and re-normalising the incorrect and correct probabilities.

Representation Distillation is a natural extension of logit distillation on the latent space

immediately before the classifier. Its adoption enables the application to other tasks, such as

regression and segmentation, while also preserving a lot of information about the input that

may be useful for the distillation loss itself. Representation distillation was originally proposed

in CRD [174], but has since been extended through a plethora of works by providing more

structural information [7], better distance functions [123, 218, 28], or improved projectors [118,

122, 9]. Our later work exploring the training dynamics of distillation, presented in this the-

sis, provides a cheaper and more theoretically motivated methodology than those previously

mentioned.

Ensemble Distillation Distilling from an ensemble has shown to be very effective [180] and

its effectiveness can be explained through a multi-view perspective [5]. [144] proposed a multi-

stage approach to leverage both labelled and unlabelled data using the ensemble prediction

formed from multiple-views. Similarly, [173] used kmeans to divide the data and train experts

on each cluster. These experts then formed an ensemble for which a student model can learn

from. Unfortunately, in general, both training the multiple diverse teachers and/or adopting

them in the distillation pipeline, is very expensive. Figure 1.4 provides a general overview

of the three discussed domains in distillation. We note that there are many other specific

applications of distillation, from zero-shot distillation through to data distillation [156]. We

omit any discussion of these applications as they are much less related to the presented work

in this thesis.

12

1.5 Thesis Outline

Chapter 2. Compressing Descriptor Models. We focus on the task of evaluating local

descriptors. This task is an essential stage in most image matching pipelines, which has its

applications in robotics, 3D reconstructions, and SLAM. This work was motivated by the

observation of a distinct emergent structure in the convolutional weights for the state-of-the-

art HardNet++ model. This structure could then be naturally exploited through a low-rank

decomposition to provide minimal reconstruction error. We proposed an alternative to the

standard convolution that enforced this decomposition and allowed us to re-train the HardNet

model with far fewer parameters and a significantly lower computational overhead. This method

was further extended to the SuperPoint model with similar results and has been published in

ICASSP 2021 [120].

Chapter 3. Reconstructing Pruned Filters with Cheap Transformations. The work

provides an efficient alternative to the standard convolutional layer. We proposed to express

the convolutional filters as spatial transformations of a core set of basis filters. Unlike in

chapter 2, this work was not motivated by an observation of any specific task. This work was

in fact originally motivated by group convolutions [40], whereby equivariance to pre-defined

group actions can be achieved through applying these transformations to the filters. Explicitly

enforcing these properties was shown to improve the generalisation across a few small datasets.

In contrast, we proposed to relax these constraints and use this methodology to improve the

performance of smaller networks. This work is published in the ICCV 2023 workshop on

resource efficient deep learning for computer vision [121].

Chapter 4. Cascaded Channel Pruning. Here we provide a natural extension of slimmable

networks [201]. These networks provide a scheme for training a single model that can instantly

switch to different widths, thus providing adaptive performance v.s. accuracy trade-offs. They

proposed to jointly train all the sub-networks at given widths with independent batch nor-

malisation layers. One significant limitation of this work was that these sub-networks were

13

restricted to a fixed width % for each layer. From the pruning literature it has been observed

that the redundancy in weights is not uniform across all layers, and in fact a large proportion

of this redundancy resides in the later layers. In light of this, we proposed to jointly train the

sub-networks through a standard pruning methodology, whereby each network is trained with

a unique hard pruning mask which is updated using a straight through estimator for its gradi-

ents. However, this hard mask was shown to provide poor gradient flow, and thus we proposed

to replace the gradients with a surrogate from the lesser pruned sub-network. This led to a

hierarchy of networks, each of which would provide explicit knowledge distillation through the

surrogate mask gradients. Once all the sub-networks converged, the smallest network was then

individually trained using the larger sub-networks as the teachers. This work was accepted to

BMVC 2020 [119].

Chapter 5. Information Theoretic Representation Distillation. This chapter takes

a slight departure from both pruning and the low-rank decomposition of weights. Here we

instead look at knowledge distillation as a way for improving the performance of a small student

model. We propose to approach the problem of distillation from an information theoretic

perspective using a cheap surrogate estimator for entropy. In doing so we introduce two distinct

loss terms which maximise the correlation and batch-wise similarity between the student and

teacher features. These two losses were used to construct a cheap and interpretable method

for distillation that led to improved performance across all the standard image classification

benchmarks. Furthermore, to show the generality of this framework, we also applied it to both

natural language understanding and training binary networks. Not only did our framework

improve the performance over language specific distillation methods, but it took the first step

in bridging the gap in performance between binary and full precision networks. This work has

been published at BMVC 2022 [123].

Chapter 6. Understanding the Role of the Projector in Knowledge Distillation.

This chapter follows on from the previous chapter by proposing a simple 3-step distillation

recipe using just a projector, batch normalisation, and a log-sum metric. This simple and

14

cheap recipe leads to improvements across a wide range of large-scale distillation benchmarks.

Most notable of which is with the data-efficient training of transformers, whereby a significant

improvement in student performance is achieved. Not only do we provide the empirical results

confirming the effectiveness of this approach, but we also provide a more concrete understanding

into the inner mechanisms of distillation through understanding the evolvement of weights in

the projection layer. Furthermore, we also show that effective cross-modal distillation can be

attributed to the soft distillation of inductive biases. This work has been published at AAAI

2024 [122].

Chapter 7. Summary and Future Work. This final chapter provides a more exhaustive

overview of the contributions and ongoing work following on from this thesis. We also discuss

limitations and the broader impact in the field of deep learning. In summary our contributions

and key take-aways from this thesis are given as follows:

1. Task-aware architecture designs can be very effective in providing strong performance v.s.

accuracy trade-offs.

2. Knowledge distillation (KD) is complimentary to many other efficient and scaleable vision

approaches.

3. KD demands a more concrete and interpretable explanation for its success. Carefully

exploring the training dynamics is critical for constructing effective distillation pipelines.

15

Chapter 2

Compressing Local Descriptor Models

Feature-based image matching has been significantly improved through the use of deep learning

and new large datasets. However, there has been little work addressing the computational cost,

model size, and matching accuracy tradeoffs for the state of the art models. In this chapter

we consider these practical aspects and improve the state-of-the-art HardNet model through

the use of depthwise separable layers and an efficient tensor decomposition. We propose the

Convolution-Depthwise-Pointwise (CDP) layer, which partitions the weights into a low and full

rank decomposition to exploit the naturally emergent structure in the convolutional weights. We

can achieve an 8× reduction in the number of parameters on the HardNet model, 13× reduction

in the computational complexity, while sacrificing less than 1% on the overall accuracy across

the HPatches benchmarks. To further demonstrate the generalisation of this approach, we apply

it to other state-of-the-art descriptor models, where we are able to a significant performance

improvement.

2.1 Introduction

Local features have a wide range of applications in robotics, tracking, and 3D reconstruction,

where the algorithms are often required to operate in real time on resource constrained devices.

However, this is generally not possible for most CNN based models due to the memory and

16

*

+

Convolutional

Depthwise
Pointwise

Convolution

+ Concatenation

*

*

*

Figure 2.1: The proposed Convolutional-Depthwise-Pointwise (CDP) layer partitions the input ten-
sor across the depth. Most of the computational resources are then reserved for only a subset of the
input features, while the rest use an efficient depth-wise convolution. The resulting features are then
concatenated and aggregated using a pointwise convolution.

computational cost far exceeding the resources. Feature extraction and matching is a critical

component in any virtual/augmented reality pipeline.

Although the computational cost of handcrafted descriptors has been extensively researched

[4, 16, 153, 23], there have been few methods for improving the efficiency of deep-learning

based descriptors. In contrast, CNN models for image classification or object detection have

been successfully compressed and deployed on mobile platforms through MobileNet [76] or

ShuffleNet [211]. This is not possible on the large models such as ResNet[68], VGG [165] or

GoogLeNet [168], which are commonly used as backbones for other tasks.

The number of parameters and the computational cost can act as a reasonable set of indirect

metrics for the practical performance on-device, such as the inference latency. Our proposed

method uses standard dense primitives, which have been efficiently implemented in most GPU-

accelerated libraries, such as CuDNN.

We explore the use of popular low-rank decomposition methods [181, 74] on two state-of-the-art

descriptor models, namely HardNet [128] and SuperPoint [44]. We provide an extensive evalua-

tion of these descriptors with efficient operations and provide a practical scheme for combining

them. Unfortunately, both depthwise-separable convolutions [162] and Tucker decomposition

[181] sacrifice the top-end accuracy of the models. To address this issue we propose a new layer,

convolution-depthwise-pointwise (CDP), which partitions the input features to utilise both the

17

standard convolution and the efficient depthwise convolution. The output features are then

concatenated and aggregated using a pointwise convolution to maintain the original output

dimensions (see figure 2.1). Using this proposed decomposition we can significantly compress

the models with minimal degradation on the task accuracy.

2.2 Related Work

The related work is divided into the recent advances of descriptor models, followed by the

successful methods for compressing convolutional neural networks.

Descriptors There has been a lot of research on developing handcrafted descriptors that

trade-off robustness for computational efficiency [153, 16, 23]. However, machine learning

approaches have been able to achieve significant accuracy improvements. A number of recently

proposed top performing descriptors have used the L2Net [176] architecture with different

training methodologies such as HardNet [128], GeoDesc [114], SOSNet [177], LF-Net [136], etc.

Despite the improved results of these descriptor models, they all leverage a large CNN backbone,

which makes their deployment on mobile devices very difficult. To this end, we propose a drop-

in replacement for the standard convolutional layer that proves to be very effective for models

trained on image matching related tasks. To verify this claim, we consider the state-of-the-art

HardNet [128] and SuperPoint [44] models, whereby we are able to achieve significant model

compression with minimal degradation in accuracy.

CNN compression This section presents several methods to improve the efficiency of the

convolutional layers that have been successfully utilised in the context of object recognition,

but not yet applied to local descriptors.

Pruning is an active removal of individual weights, kernels, or even entire layers from a network

based on a saliency measure or a regularization term. Optimal Brain Damage [93] proposed

to evaluate the saliency of individual weight entries using an approximation of the Hessian.

This idea was further developed in Optimal Brain Surgery [63] through iteratively computing

18

*

Depthwise

Pointwise

* *

Pointwise

* *

Pointwise
Convolutional

Figure 2.2: Depthwise separable convolution (left) and the Tucker decomposition applied to a con-
volutional layer (right) [88].

the Hessian to obtain a more exact approximation. [188, 95] consider the pruning of weights

in a group-wise fashion, while NISP [202] prune kernels through a propagated importance

score, and [214] use Bayesian inference with sparsity-inducing priors. Pruning based methods

for compression are orthogonal to low-rank decomposition, which is what we explore in our

approach.

Low-rank tensor decomposition is a method for approximating a higher order tensor using

simple components, which are then combined using elementary operations. This can lead to a

significant reduction in the number of parameters used to represent the original tensor, improve

computational efficiency, and result in a more compact and interpretable model. Depthwise-

separable convolutions (see figure 2.2 left) are the most common and have been used in all the

MobileNet variants [76, 53]. Xception [37] has also successfully used these layers as replacements

in the Inception modules [168], however, they did not explore partitioning the input tensor

across the depth, which is the focus of our proposed CDP layer. Tucker [181] and its special

case Canonical Polyadic (CP) [74] decomposition factor an N-dimensional tensor into lower

dimensional components. The original convolution operation can then be replaced by a series

of convolutions with smaller tensors [82, 88]. Tensor networks further provide a theoretical

framework for such decomposition and have shown promising results [186].

2.3 Compressed Descriptor Model

In this section we introduce our new CDP layer and a scheme that combines the Tucker de-

composition and depthwise-separable layers.

19

Convolution-Depthwise-Pointwise (CDP) Our proposed approach is motivated by the

observation of two distinct partitions of the weights across the input channel depth. Figure

2.3 shows some of the convolutional weight slices for the pre-trained HardNet++ model, where

a significantly higher variance in the weight entries is present across only a subset of the

input channels. In fact, we observe a clear and consistent cut-off point (offset) across each

layer. These low-variance columns (input channel slices) can be approximated using a low-rank

decomposition with a lower reconstruction error. In light of this, we enforce a partition on the

convolutional weights that matches this observation before training.

Figure 2.3: Example of the convolutional weight slices W[:, :, i, j] from the pre-trained HardNet++
model for layers 6 and 7, Where i, j is a given spatial coordinate in the receptive field. Note that
the columns correspond to a given input channel index and the weights are scaled to be in the range
[0, 255].

Based on these observations, we propose an approach that combines a depthwise separable

layer with a standard convolutional layer to provide a certain degree of full dense spatial and

channel-wise connectivity for a subset of the input channels. This is shown in figure 2.1, where

the first few channels are reserved for a standard convolution, while depthwise kernels are

used for the rest. These output features maps are then concatenated and aggregated using a

pointwise convolution. We argue that, although the CDP layer will have more parameters than

the typical depthwise separable layers, the dense connectivity will ensure that the high-end

accuracy is maintained. We define the number of input channels for the standard convolution

to be the offset parameter α. This parameter provides a smooth transition between a normal

convolution layer (albeit with a redundant pointwise convolution), where α is equal to the

number of input channels, and a fully depthwise separable layer, when α is equal to zero.

The input feature maps can be represented as a 3-way tensor, X ∈ IRW×H×C , where C indicates

the number of feature maps andW,H are the spatial dimensions. We use Xi:j to indicate feature

maps indexed from i (inclusive) through to j (non-inclusive). This notation is used to define

20

the operation of the CDP layer proposed. Let α ∈ [0, C] indicate the depthwise offset for

compressing the convolutional layer and W ,D,P correspond to the convolution, depthwise,

and pointwise weights respectively.

Zn =

X0:α ∗W 0 ≤ n < N

Xα:C ∗ D N ≤ n < N + C

(2.1)

Y = Z ∗ P (2.2)

The total number of weights for stage (1) is given by K2 · α ·N +K2 · (C − α), where K2 is

the receptive field size and N is the number of kernels used for the standard convolution block.

The output from both these blocks are then concatenated along the depth-axis and followed by

a pointwise convolution with O kernels. Both α and N can be adjusted to control the overall

compression however, for simplicity, we use N = O throughout. On this basis, compression

and acceleration of the overall layer is achieved if α < C − N
K2−1

(see Supplementary).

Pointwise linear bottleneck We also explore an approach that attempts to combine both

Tucker decomposition and the depthwise separable layers. This method was motivated by the

fact that the pointwise kernels contribute far more significantly to the total computation and

the number of parameters than the depthwise kernels. We choose to replace the pointwise

convolution in the depthwise separable layer with a bottleneck, where the size of this bottle-

neck is determined by Tucker decomposition with Variational Bayesian Matrix Factorization

(VBMF) [130]. The core tensor is not used since the pointwise kernel has unit spatial dimen-

sions and the maximum rank is chosen to ensure restorability of the models accuracy. In this

case, model compression and acceleration is only achieved if the depth of the intermediate fea-

ture map R is sufficiently small s.t. CN > CR+RN . This methodology differs from the Tucker

decomposition [88] by the fact that the core tensor is not used. This proposed scheme is inspired

by the linear bottlenecks used in MobileNetV2 [53], except that our spatial aggregation is not

21

performed in this lower-dimensional subspace and the low-rank approximation is pre-computed

using VBMF of the pre-trained network weights. Hand-crafted linear decomposition schemes,

such as SVD or PCA, could also be used, but may incur additional computational overheads.

2.4 Experimental results

The task performance of the descriptor models are evaluated using the HPatches benchmark

[12]. This dataset is composed of local patches at varying levels of illumination and viewpoints

changes from 116 different scenes. We focus on the matching and retrieval tasks as these were

found to be more challenging and useful for practical applications [12] unlike the validation task.

The HardNet model variants were all implemented in PyTorch [139] using the same training

procedure1 and the HardNet++ weights were trained on the Liberty, Yosemite, and Notredame

datasets, while all the models proposed in this chapter are trained solely on the Liberty dataset

from random initialisation.

We perform an evaluation of the standard depthwise separable layers and Tucker decomposition

on the HardNet model along with a comparison to our proposed pointwise linear bottleneck

scheme and the use of CDP layers.

Performance metrics For our evaluation we consider both the computational cost, mea-

sured in the number of floating-point operations (FLOPs), and the total number of parameters

across all the convolutional layers. The cost of the element-wise non-linearity is negligible and

the batch normalisation can be fused with the previous layer, thus they have been omitted

from calculations. This computational complexity puts a theoretical bound on the minimum

attainable latency with an efficient GPU implementation. The model size is described through

a compression ratio i.e., the ratio of the total number of parameters in the original network

against the compressed network.

1https://github.com/DagnyT/hardnet

22

Layer offsets Homography Estimation Detector metrics Descriptor metrics Performance

#2 #3 #4 #5 #6 #7 #8 #9 #10 ϵ = 1 ϵ = 3 ϵ = 5 Rep. MLE NN mAP M. Score Compr. Ops.

Original .440 .770 .830 .606 1.14 .810 .550 1× 6.55

2 4 4 8 8 16 16 16 16 .445 .762 .824 .601 1.06 .835 .519 2.58× 2.10

5 5 5 5 5 5 5 5 5 .453 .752 .822 .596 1.06 .839 .517 2.97× 2.15

2 2 2 2 2 2 2 2 2 .407 .741 .826 .594 1.06 .840 .511 3.21× 1.91

Table 2.1: The CDP SuperPoint variants are able to achieve significant model compression with
minimal degradation against the related detector and descriptor performance metrics. The computa-
tional complexity Ops. is measured in GFLOPs, and it is the contribution of the VGG16 backbone
and the separate detector/descriptor heads.

Compressed HardNet performance We first report the baseline results for state of the art

descriptors and then compare the proposed accelerations in terms of network compression ratio,

mAP and computational cost (FLOPs). Table 2.2 (top) compares the number of parameters

and HPatches results for three descriptors frequently used in the literature. L2Net [176] and

TFeat-M* [13] are CNN architectures and SIFT [112] is a handcrafted descriptor with square

root normalisation [6]. The SIFT consists of two convolutions to obtain image gradients which

is equivalent to two 5x5 hardcoded kernels, thus 50 parameters

Alternative methods. To form a baseline for the evaluation of our proposed CDP layers, we

consider the use of both depthwise separable layers, and an efficient Tucker decomposition

implementation [88]. We further consider the use of a pointwise linear bottleneck to combine

the benefits of both these methods. The results can be seen in table 2.2.

Model # Parameters Image Matching Patch Retrieval
L2Net 1,334,560 38.8 59.0
SIFT 50 25.7 42.7

TFeat-M* 599,808 28.7 52.0

Model Compression ratio Image Matching Patch Retrieval Operations (MFLOPs)

HardNet 1× 51.1 70.5 35.7

DepthSep{7} 4.3× 50.1 69.4 34.6

DepthSep{6-7} 7.39× 47.1 67.5 26.3

DepthSep{5-7} 10.72× 46.4 67.0 25.4

DepthSep{2-7} 18.91× 44.5 66.0 5.6

Tucker{2-6} 1.21× 50.7 70.1 10.3

Tucker{7} 3.11× 29.7 50.1 34.8

Tucker{2-7} 6.81× 21.8 42.2 9.4

DepthSep{7} + Tucker{2-6} 20.56× 27.4 47.3 8.5

DepthSep{7} + TDW{5-6} 12.01× 47.0 67.2 25.0

Table 2.2: Comparison of using depthwise-separable layers, Tucker decomposition, and a proposed
scheme for combining the two (TDW). The number(s) in the braces indicates the layers replaced. The
image matching and patch retrieval accuracy is evaluated with mean Average Precision (mAP).

23

Layer offsets Image Matching Patch Retrieval Compression ratio Operations
#2 #3 #4 #5 #6 #7 mAP mAP MFLOPs

Original 51.1 70.5 1× 32.35
2 2 2 2 2 2 48.6 68.6 9.50× 10.65
5 5 5 5 5 5 50.3 70.4 7.66× 12.43
10 10 10 10 10 10 50.0 70.0 5.79× 15.43
15 15 15 15 15 15 50.4 70.3 4.65× 18.42
2 4 4 8 8 16 50.0 70.0 5.01× 11.76
4 8 8 16 16 32 50.1 70.1 3.21× 14.07
4 8 8 16 16 2 49.9 69.9 7.61× 13.83

Table 2.3: Applying different depthwise offsets for the HardNet model with CDP layers. The results
are evaluated on the HPatches benchmark and averaged over the Easy, Hard, and Tough distributions.

CDP Layers. The results from table 2.3 demonstrate how enabling a subset of the channels to

utilise full dense connectivity allows for the model to reach the high-end accuracy, while still

achieving the favourable compression and acceleration from depthwise separable layers. The

first group of rows considers a fixed offset for each layer, the second group takes into account

the expansion of every odd layer by doubling the offset on each of these layers, and finally the

bottom row uses the offsets as defined from the pre-trained HardNet++ weights (see figure

2.3). Specifically, for the last row, we define the offset as the channel index where the variance

drops below the average across all channels. We observe that, as long as there is at least some

dense channel connectivity (i.e. α ≥ 5), the architecture is able to achieve the top-end accuracy,

which was not attainable with just depthwise separable layers, Tucker decomposition, or even

the proposed combined approach. The CDP variants are able to achieve the best balance

between the number of parameters and computation, while also demonstrating very little drop

in accuracy (< 1%). Not only is the top-end accuracy maintained, but the model is pushed into

a suitable range for real-time performance on low-compute mobile phones (10-150MFLOPs).

SuperPoint We explore how the CDP layer can be applied to other models for a significant

performance improvement. For this we consider the SuperPoint [44] model, which leverages a

VGG [165] backbone to jointly predict the interest points and descriptors for matching.

To ensure consistency, we follow the original training methodology for all the evaluations, which

includes the same homographic adaptions of training images. The model is jointly trained

using the pseudo ground truth labels on the MS-COCO [103] dataset, while the evaluation

24

is performed using HPatches [12] benchmark. The results for the complete image matching

pipeline can be seen in table 2.1 and show that the CDP layers are able to achieve a significant

∼ 3.2× reduction in parameters and a ∼ 1.9× reduction in FLOPs with minimal loss in the

attainable matching score.

2.5 Conclusions

In this chapter we demonstrate the accuracy/performance trade-offs of applying various fac-

torisation and networks compression methods on CNN models used for local feature extraction.

We have proposed a novel Convolution-Depthwise-Pointwise (CDP) layer that consists of a par-

titioned low and full rank decomposition of the weights that matches the naturally emergent

structure of the pre-trained weights. The allocated dense connectivity for a subset of the input

features helps maintain the top-end descriptor accuracy. We further demonstrate the general-

isability of this idea onto large architectures, namely the SuperPoint model. In both cases, we

are able to compress the models significantly, with minimal to no accuracy degradation. This

enables these models to be meet the resource constraints imposed by mobile devices for a wide

host of applications, such as augmented/virtual reality.

25

2.6 Supplementary

In this section we provide derivations for the compression ratio, which relates to the reduction

in parameters, and the computational cost, which can be used to infer the inference latency, of

our proposed CDP layer.

2.6.1 Compression ratio

The CDP layer replaces the standard convolution operation with a smaller convolution that

acts on a subset of the input channel dimensions. A depthwise convolution is then used for

the remaining feature maps and a pointwise convolution is used for fusing features from both.

With a depthwise offset given by α, the total number of weights is given by the sum of each of

the contributing blocks respectively.

PARAMS = K2 × α×N +K2 × (C − α) + 1× 1× (N + (C − α))×N (2.3)

Note that we make the assumptions that there are N convolutional kernels and N pointwise

kernels, however, further compression could be achieved by reducing the number of standard

convolutional kernels. The overall compression is achieved if α satisfies the following inequality:

K2 · α ·N +K2 · (C − α) + (N + (C − α)) ·N < K2 · C ·N (2.4)

26

Solving for α, this can then be reduced to:

α <
K2 · C ·N −K2 · C −N2 − C ·N

K2 ·N −K2 −N
(2.5)

=
C · (K2 ·N −K2 −N)−N2

K2 ·N −K2 −N
(2.6)

= C − N2

K2 ·N −K2 −N
(2.7)

= C − N2

K2 · (N − 1)−N
(2.8)

By assuming N ≫ 1, the bound on α is further restricted but significantly simplified.

α < C − N

K2 − 1
(2.9)

2.6.2 Computational cost

The cost of applying the element-wise ReLU operation to the intermediate feature map of both

the depthwise and standard convolution is given by:

W ×H × (N + (C − α)) (2.10)

Thus, the overall computational cost of the CDP layer is as follows:

FLOPS = WH · (K2αN +K2(C − α) + (N + (C − α)) + (N + (C − α))N) (2.11)

27

The component parts are for the standard convolution, depthwise convolution, element-wise

ReLU and pointwise convolution respectively. From this, the computational speedup can be

derived:

C ·N
αN + C − α

+
K2 · C

1 +N + C − α
+

K2 · C ·N
C − α

(2.12)

Similarly for the compression, we can also derive an inequality for the requirement on α for

achieving a reduction in the computational cost.

α <
K2CN −K2C −N − C −N2 −NC

K2N −K2 − 1−N
(2.13)

= C +
N · (N + 1)

K2 · (1−N) +N + 1
(2.14)

Using the same assumption that N ≫ 1 further simplifies this inequality:

α < C +
N2

N −K2N
(2.15)

= C − N

K2 − 1
(2.16)

Which is the same condition imposed on the compression of parameters. This is a result of

the imposed assumption that N ≫ 1, which effectively ignores the cost of the ReLU operation.

This is consistent in practise, where the cost of the ReLU operation is often not significant.

28

Chapter 3

Reconstructing Pruned Filters using

Cheap Spatial Transformations

In this chapter we present another efficient alternative to the convolutional layer using cheap

spatial transformations. This decomposition is not derived from any specific task properties but

instead exploits an inherent spatial redundancy of the learned convolutional filters. This type

of decomposition enables a much greater parameter efficiency, while maintaining the top-end

accuracy of their dense counter-parts. Training these networks is modelled as a generalised

pruning problem, whereby the pruned filters are replaced with cheap transformations from

the set of non-pruned filters. We provide an efficient implementation of the proposed layer,

followed by two natural extensions to avoid excessive feature compression and to improve the

expressivity of the transformed features. We show that these networks can achieve comparable

or improved performance to state-of-the-art pruning models across both the CIFAR-10 and

ImageNet-1K datasets.

3.1 Introduction

Recent work on compressing CNNs [95, 221, 187, 100, 47, 143, 69, 71], have exploited the

inherent weight redundancy using structured pruning. This approach provides a way to reduce

29

Depthwise

Transformations

Te
m

pla
te

Pointwise

a) Standard convolution b) Depthwise Separable Convolution c) Cheap Spatial Transformations

Figure 3.1: Constructing more convolutional filters using cheap spatial transformations. (a) Original
convolutional layer. (b) Depth-wise separable layers, which fully decouple the spatial and depthwise
aggregation of features. (c) Proposed layer expressed new filters as spatial transformations of a smaller
set of templates.

the size of a network without relying on sparse software libraries or hardware accelerators. Most

of these methods involve ranking the importance of filters and then removing those that fall

below a specific threshold. However, it is important to note that when the pruning rates are

high, some of these pruned filters can still contribute in retaining the top-end accuracy. To

address this limitation, we propose a cheap decomposition of the convolutional layer where the

pruned filters are reconstructed using cheap spatial transformations of the non-pruned filters,

which we call templates. We propose an approach to transfer an existing CNN to this efficient

architecture through a generalised pruning pipeline. This methodology can be considered a

natural extension of pruning, but instead of zeroing out the pruned filters, we are replacing

them with the cheap template transformation. This work can be related to group equivariant

convolutional networks [40], which consider the hand-crafted construction of filters using a pre-

defined group to learn equivariant features. In contrast to this work, we jointly learn both

the transformations and templates with the alternative objective of training small and efficient

CNNs. Our contributions can be summarised as follows:

• We propose a novel approach to construct expressive convolutional filters from cheap

spatial transformations using a set of filter templates.

• We model the training as a generalised pruning problem with a simple magnitude based

saliency measure.

30

• We introduce a grouped extension to mitigates excessive feature compression.

• Our results show competitive performance over state-of-the-art pruning methods on both

the CIFAR-10 and ImageNet-1K datasets.

3.1.1 Related work

Pruning explicitly exploits the inherent parameter redundancy by removing individual weight

entries or entire filters that have the least contribution to the performance on a given task. This

was first introduced in [93, 63] using the Hessian of the loss to derive a saliency measure for

the individual weights. SNIP [94] proposed to prune weights using the connection sensitivity

between individual neurons. Subsequent work propose a sparse neuron skip layer [167] to achieve

fast training convergence and a high connectivity between layers. Cheap heuristic measures have

also been used, such as the magnitude [62, 95], geometric median [69], or average percentage of

zeros [79]. Although some of these unstructured pruning methods are able to achieve significant

model size compression, the theoretical reduction in floating-point operations (FLOPs) does

not translate to the same practical improvements without the use of dedicated sparse hardware

and software libraries. This has led to the more widespread adoption of structured pruning

approaches, which focus on removing entire filters. [221] introduced additional loss terms

to select the channels with the highest discriminative power, while [202] proposed to prune

in accordance with a neural importance score. DMCP [60] models the pruning operation

as a differentiable markov chain, where compression is achieved through a sparsity inducing

prior. Similarly, [10, 214] model pruning in the probabilistic setting using both hierarchical and

sparsity inducing priors. Unlike these prior works, we propose to reconstruct the pruned filters

using cheap transformations. These reconstructed filters are shown to be expressive and learn

diverse features, thus mitigating the need for any sophisticated pruning strategies.

Low-rank decomposition is concerned with compactly representing a high-dimensional ten-

sor, such as the convolutional weights, as linear compositions of much smaller, lower-dimensional,

tensors, called factors. Any linear operations that are then parameterised by these weights can

be expressed using cheaper operations with these factors, which can lead to a reduction in the

31

computational complexity. Depthwise separable convolutions split the standard convolution

into two stages, the first extracts the local spatial features in the input, while the second aggre-

gates these features across channels. They were originally proposed in Xception [37] but have

since been adopted in the design of a range of efficient models [27, 53, 75, 170]. This has led to

the development of optimized GPU kernels that bridge the gap between the theoretical FLOP

improvements and the practical on-device latency. Both CP-decomposition [74] and Tucker de-

composition [181] have also been used to construct or compress pre-trained models [82, 88, 120].

Another line of work has explored the use of tensor networks as a mathematical framework for

generalising tensor decomposition in the context of deep learning [64, 186]. Ghost modules [61]

use depthwise convolutions to construct more features, leading to improved capacity at a much

smaller overhead. Our proposed layer can be seen as an alternative parameterisation of the

convolutional weights which can be naturally pruned using a generalised pruning pipeline.

Knowledge distillation attempts to transfer the knowledge of a large pre-trained model

(teacher) to a much smaller compressed model (student). This was originally introduced in the

context of image classification [72], whereby the soft predictions of the teacher can act as pseudo

ground truth labels for the student. This methodology enables the student model to more easily

learn the correlations between classes which are not available through the one-hot encoded

ground truth labels. Hinted losses further provide knowledge distillation for the intermediate

representation [151] and can be modelled as reconstruction L2 loss terms in the same space or

in a projected feature space [198, 141, 124, 36, 123]. Weight sharing and jointly training models

at different widths/pruning-rates has also been shown to provide implicit knowledge distillation

to the smallest models [201, 200]. In general, our proposed method is orthogonal to knowledge

distillation - its adoption can be employed in addition to further improve performance.

3.2 Method

In this section we propose a novel decomposition of the convolutional layer. We do this be

expressing the convolutional filters as spatial transformations of a compact set of template

filters. These templates are obtained through a well-established pruning procedure, ensuring

32

discriminative features. Subsequently, we present an algorithmically equivalent derivation of

this layer that has much fewer floating-point operations (FLOPs). Moreover, we extend our

approach naturally by introducing a group extension, which enhances the connectivity between

layers. This extension enables an improved channel connectivity, fostering more robust and

informative feature propagation.

3.2.1 Constructing diverse convolutional filters.

Let W = {Wn ∈ IRK×K×C}Nn=1 describe the set of filters for a given convolutional layer with

an input depth C, output depth N , and a receptive field size of K ×K. Our method is based

on an assumption that a large subset of these filters can be faithfully approximated as spatial

transformations of a much smaller set of filters, which we call templates B. For simplicity, and

without loss in generality, consider the scalar transformations, which can be implemented as

cheap element-wise products between the spatial entries of the templates. Thus, for aK×K×C

template, each transformation can be parameterised using K ×K learnable weights. Consider

the case with N templates and N output feature maps. The proposed decomposition is given

as follows:

Yh,w,n =
K∑

kw,kh

C∑
i

Xh′,w′,i · Wkh,kw,i,n (3.1)

≈
K∑

kw,kh

C∑
i

Xh′,w′,i · Bkh,kw,i,n · Tkh,kw,n (3.2)

h′ = (h−1)s+ kh − p, w′ = (w − 1)s+ kw − p

where s is the stride and p is zero-padding. The general formulation using affine transformations

is illustrated in figure 3.1. Model compression can be achieved when the number of basis filters

M is less than the number of output feature maps N . This is realised through pruning, which

is discussed in second 3.2.2. In this case, the templates are then re-used to compute more filters

using different transformations.

33

1×1 Convolution Gather

Figure 3.2: Too few templates can overly compress the input features. We propose to introduce a
group parameter to naturally balance the expressiveness of the both the template and transformation
stages.

Figure 3.3: Visualising learned transformations for a given layer. (left) original learned filters.
(middle) expressive filters using affine template transformations. (right) pruning filters. Both the
vanilla pruned layer and the decomposed layers use a pruning rate of 0.7. Each column represents a
filter for a given output channel and black pixels represent zero entries.

The choice of mapping from which template to which output feature map is not critical, as

long as it is fixed after the pruning stage to enable fine-tuning. For our experiments, we set

this mapping to be i = j mod M , where the ith output feature map is allocated the jth

template, and where M is the total number of templates. This choice of mapping ensures that

all templates are uniformly used, thus enabling a diverse set of transformed filters. The spatial

transformations are then jointly learned alongside the templates.

3.2.2 Using pruning to select the filter templates.

The pruning literature has proposed increasingly sophisticated pruning heuristics and training

pipelines. Examples of such including layer-wise pruning strategies [49] and gradient-based

saliency measures [129], which incur additional hyperparameters and increased computational

34

costs. In favour of simplicity, and to demonstrate the generalisability of our decomposition,

we propose to use a very simple magnitude-based criterion to rank the importance of filters

for selecting the set of templates. We observe that this choice of saliency measure naturally

leads to a uniform pruning strategy across all layers in the network (figure 3.6), which reduces

excessive feature compression for any given layer (see section 3.2.4).

Figure 3.4: Comparison with a pruned baseline and the importance of which pruning heuristic. (left)
Performance of a VGG16 network trained using affine (with) and scalar (without) spatial transforma-
tions with the same training methodology. (right) show the performance trade-off at different pruning
rates using both a magnitude-based and a gradient-based saliency.

We provide an ablation on the importance on the choice of saliency measure in figure 3.4 (right).

In this ablation we compare the performance using two different measures, namely magnitude

based and gradient based [129]. Although in some cases the gradient based measure does lead

to better performance, which is attributed to a more discriminative selection of templates, it

does come at an increased computational overhead. In favour of simplicity, and to demonstrate

the robustness to the choice of templates, we use a magnitude based measure throughout. In

fact, for the ImageNet-1K experiments we extend this hypothesis and use a randomly initialised

network to begin with, rather than from a pre-trained network - as is more commonly used in

the pruning literature.

35

3.2.3 Performance and efficient implementations.

Computing the output features using the transformed filters and then using a standard convo-

lution would not lead to any reduction in FLOPs. To address this, we propose to decompose

the convolutional layer into two stages. The first computes the template features Z using the

template filters B, while the second projects these features to a different space using the spatial

transformations T . The output features are then the union of the original template features

(identity transformations) and the transformed features. This two stage implementation is al-

gorithmically equivalent to first constructing the filters and then performing a convolution, and

its derivation is given as follows:

Yh,w,n ≈
K∑

kw,kh

C∑
i

Xh′,w′,i · Bkh,kw,i,n · Tkh,kw,n (3.3)

=
K∑

kw,kh

Tkh,kw,n

(
C∑
i

Xh′,w′,i · Bkh,kw,i,n

)
︸ ︷︷ ︸

Z

(3.4)

Computing Z can be achieved using a pointwise convolution, which translates to an optimised

general matrix multiply primitive. The second stage, which consists of projecting Z to the

output space, reduces to a series of gather operations and multiplications, which will implement

the spatial transformations. Both of these operations can be trivially implemented in most deep

learning frameworks.

3.2.4 Channel connectivity and feature compression.

By design, the proposed decomposition preserves the same number of input and output chan-

nels as the original convolution. This means that all the pruned filters are being reconstructed

using some cheap and learned template transformation. The consequence of this design is that

at high pruning rates there will be a significant bottleneck in the latent space Z (see figure 3.2).

This bottleneck can result in significant feature compression that can degrade the downstream

performance and discriminative power of representations. We could address this problem by

36

simply increasing the number of templates per layer, but this would incur a significant overhead

in terms of both parameters and FLOPs. Instead, we propose to introduce a grouped extension

that can naturally scale the dimensionality of the latent space Z with a minimal computational

and parameter overhead. To do this we replace the pointwise convolution in the two stage

processing with a grouped pointwise convolution [92], which has an efficient implementation in

most deep learning frameworks. This transformation then translates to the sum of G trans-

formations applied to feature maps from the G distinct groups. Doing so in this way enables

cross-group information flow without the need for any channel shuffles [211]. Figure 3.2 graph-

ically demonstrates this grouped extension. On the left is the original case, whereby G = 1. At

this pruning rate, there is a very large compression of features. Increasing the groups to 2 (as

shown on the right) provides a natural scheme for increasing the depth of Z without incurring

any significant computational overhead. The results of the G different transformations across

groups are then added to form each of the N output channels.

Figure 3.5: Importance of channel connectivity and the group extension. (left) Using more groups
enables a smaller bottleneck ratio, which improves the top-end accuracy. (right) shows that increasing
the minimum number of templates also reduces feature compression but at a much larger overall cost.

In the limiting case where G = M , the channel connectivity pattern is very similar to that of

depthwise-separable convolutions since there will be a one-to-one mapping between channels in

the first stage, while the second stage will be fully connected. However, there is still a signifi-

cant distinction between the two - our proposed decomposition enables spatial aggregation of

features in both stages.

37

Figure 3.2 demonstrates the importance of this grouped extension at high pruning rates. We

find that although simply increasing the minimum number of templates in each layer does

implicitly address this feature compression problem, it comes at a much larger overall cost. In

general, G can be tuned depending on the target pruning rate.

3.2.5 Computational cost and parameter efficiency.

The standard convolutional layer has the computational cost of the order of H ·W ·K2 ·C ·N ,

whereas the cost of the proposed decomposition is given by:

FLOPS = H ·W ·K2 · C
��G

·M ·��G+ (3.5)

H ·W ·K2 ·G · (N −M)

Where M indicates the number of templates and G is the number of groups. The reduction in

computation (FLOPS ↓) is subsequently given by:

FLOPS ↓ =
HWK2 · C ·M +HWK2 ·G · (N −M)

HWK2 · C ·N
(3.6)

=
M

N
+

G

C
− GM

CN
(3.7)

We prune the set of templates such that M ≪ N and we set G ≪ C to yield a reduction

in FLOPs. We further improve the bottleneck problem by using G · M templates applied to

C/G channels that are efficiently implemented with grouped convolutions. Finally, we ensure

cross-group information flow by increasing the number of cheap spatial transformations that

are then applied cross group.

38

From a similar view, we can also derive the reduction in parameters, where the number of

parameters for a convolutional layer is given by:

PARAMS = K2 · C ·N (3.8)

and our proposed decomposition has a parameter count given by:

PARAMS = K2 · C
G

·M +K2 ·G · (N −M) (3.9)

Not the subtraction is because we use M identity transformation, while the rest of the output

features are computed using cheap spatial transformations. Using both 3.8 and 3.9, we can

derive the reduction in parameters (PARAMS ↓), which ends up being identical to equation

3.7.

PARAMS ↓ =
K2 · C

G
·M +K2 ·G · (N −M)

K2 · C ·N
(3.10)

=
M

GN
+

G

C
− GM

CN
(3.11)

When using more general and expressive spatial transformations, such as GL(3) or SO(3),

the second stage can instead be implemented using a bilinear sampling of neighbouring spatial

pixels in Z. These transformations will be parameterised using a 2 × 3 matrix and result

in the number of floating point operations being increased to 4 per spatial location. This

increase in FLOPs and the number of parameters is often small, but it enables a significant

increase in the expressiveness of transformations. However, in general, we observe that a learned

scalar transformations can still yield a strong accuracy v.s. performance trade-off (see figure

3.2 left and table 3.3). We wish to highlight that in the case of these more general spatial

transformations, the parameter reduction equation 3.11 and flop reduction equation 3.7 will

differ.

39

Figure 3.6: Comparing the pruning rates of each layer using different saliency measures. We see
that a magnitude based (MAG) criterion exhibits a more uniform pruning rate than gradient based
measures (FO).

3.3 Experiments

In this section we evaluate our approach on the CIFAR and ImageNet datasets. The models are

compared through the number of parameters, the number of floating point operations, followed

by the top-1 classification accuracy. All of these models are trained on a single NVIDIA RTX

2080Ti GPU using either stochastic gradient descent (CIFAR10) or AdamW (ImageNet-1K).

We set the minimum number of templates for each layer to be 8 for CIFAR10 and 32 for

ImageNet-1K. Finally, we use the number of groups in each layer to be 2 for all the main

benchmark experiments

3.3.1 Experimental results on CIFAR-10

The CIFAR10 dataset [91] consist of 60K 32 × 32 RGB images across 10 classes and with a

5:1 training/testing split. The chosen VGG16 [165] architecture is modified for this dataset

with batch normalisation layers after each convolution block and by reducing the number of

classification layers to one. During training, we augment the datasets using random horizontal

flips, random 32 × 32 crops, and random rotations. The baseline architectures are trained for

300 epochs with a step learning rate decay and we use a simple magnitude based criterion for

ordering and selecting the most important filters to form the set of templates. This selection is

40

Model Method Baseline Acc. (%) Acc. (%) Acc. Drop (%) FLOPs ↓ (%) Parameters ↓ (%)

VGG16

Hinge [97] 93.59 94.02 -0.43 39.07 19.95
Ours 93.26 93.92 -0.66 45.56 56.77
NSPPR [220] 93.88 93.92 -0.04 54.00 -
AOFP [47] 93.38 93.84 -0.46 60.17 -
DLRFC [71] 93.25 93.93 -0.68 61.23 92.86
DPFPS [154] 93.85 93.67 0.18 70.85 93.92
Ours 93.26 93.62 -0.36 61.38 81.15
ABC [99] 93.02 93.08 -0.06 73.68 88.68
HRank [101] 93.96 91.23 2.73 76.50 92.00
AOFP [47] 93.38 93.28 0.10 75.27 -
Ours 93.26 92.74 0.52 80.89 95.26

NISP [202] 93.04 93.01 0.03 43.60 42.60

ResNet56

Ours 93.60 94.18 -0.58 35.91 51.64
FPGM [69] 93.59 93.49 0.10 53.00 -
NSPPR [220] 93.83 93.84 -0.03 47.00 -
ABC [99] 93.26 93.23 0.03 54.13 54.20
SRR-GR [187] 93.38 93.75 -0.37 53.80 -
Ours 93.60 93.35 0.25 48.27 71.24
DPFPS [154] 93.81 93.20 0.61 52.86 46.84
Ours 93.60 92.81 0.79 56.36 80.05

Table 3.1: Comparison to other pruning methods on CIFAR10. Each model is trained using a
magnitude based measure for selecting the filter templates, number of groups = 2, and with a minimum
of 8 template filters per layer to avoid catastrophic pruning.

in conjunction with a simple linear pruning schedule that spans the first 40 epochs of training.

We highlight that this choice of pruning schedule is in contrast to most of the other pruning

methods [221, 113], which can adopt much longer pruning stages and introduce additional

layer-by-layer stopping conditions. The results are shown in table 3.1 and show comparable or

improved performance to the much more sophisticated pruning strategies across a wide range

of compression ratios.

3.3.2 Experimental results on ImageNet

For experiments on ImageNet-1K we use the ResNet-50 architecture and the same magnitude

based saliency measure described in section 3.3.1. In general, magnitude pruning was empiri-

cally shown to provide a more uniform pruning rate across all of the residual blocks, which is

important to avoid overly compressing intermediate features. We set the minimum number of

templates for each layer to be 8 and the number of groups in each layer to be 2. The model

is trained for a 300 epochs with a linear learning rate decay every 25 epochs. Finally, we use

MixUp and CutMix augmentations with α set to 0.1 and 1.0 respectively.

41

Model Method Baseline Acc. (%) Acc. (%) FLOPs ↓ (%) Parameters ↓ (%)

ResNet50

G-SD-B [107] 76.15 75.85 44 23
MetaPruning [108] 76.60 75.40 50 -
NSPPR [220] 76.15 75.63 54 -
DPFPS [154] 76.15 75.55 46 -
S-COP [171] 76.15 75.26 54 52
LRF-60 [84] 76.15 75.71 56 53
DLRFC [71] 76.13 75.84 54 40
Ours 76.20 75.59 47 40

Table 3.2: Comparison to other pruning methods on ImageNet-1K. Our model is trained from
random initialisation and with a simple magnitude based criterion. Using number of groups = 2 and
with a minimum of 32 templates per layer.

The ImageNet results are shown in table 3.2 and show comparable performance to state-of-

the-art pruning methods without the need for extensive pruning and fine-tuning pipelines. To

further demonstrate the robustness of this decomposition to the choice of templates and the

effectiveness of joint template/transformation training, we propose to begin training from a

randomly initialised network. In doing so, we attain comparable performance other pruning

methodologies, without the need for any sophisticated pruning pipeline and stopping conditions.

3.3.3 Ablation experiments

Group extension. To demonstrate the benefit of our proposed group extension, we train a

VGG16 network at different pruning rates and with a varying number of groups. The results in

figure 3.5 (left) show that at high pruning rates, whereby the layer will incur a large compression

of features, increasing the number of groups will help. Although increasing the minimum

number of templates per layer can also partially address this problem as shown in figure 3.5

(right), it would come with a much more significant computational overhead. In practice, we

find that carefully selecting both the minimum number of templates and the number of groups

can lead to the best performance trade-off.

Transformation family. We explore the importance of choosing a suitable parametric family

of transformations for the template filters. To do this, we first consider simple scalar multi-

plications of the templates, and then we consider learnable rotations. Finally, we consider the

more expressive affine transformations. The results are shown in table 3.3. We find that in-

42

Transformations Top-1 Accuracy (%) Pruning Rate

Scalar 90.62 0.9
SO(3) 92.32 0.9
GL(3) 92.33 0.9

Scalar 92.48 0.7
SO(3) 93.48 0.7
GL(3) 93.57 0.7

Table 3.3: Ablating the family of transformations. Increasing the expressivity of transformations
has a small improvement in performance, suggesting that most of the network capacity is reserved for
depthwise feature aggregation.

troducing more expressive transformations does improve the attainable performance, which is

more significant at the higher pruning rates.

We explore the importance of selecting an appropriate parametric family of transformations

for the template filters. To do this, we first consider a simple scalar multiplications applied

to the templates. Subsequently, we extend our analysis to encompass learnable rotations,

further expanding the range of potential transformations. Finally, to unlock the full expressive

transformations, we consider the general linear group, which provide a richer and more versatile

set of manipulations.

Visualising learned transformations. Figure 3.3 provides a comparison between the orig-

inal filters, the reconstructed filters, and the pruned filters. We can discern that the the

reconstructed filters are significantly distinct, thus enabling highly discriminative features for

the downstream task. This result is in stark contrast with conventional pruning, which sim-

ply zeroes out these pruned filters. This visualisation highlights the significance of our novel

approach which not only prunes but also actively reconstructs the filters, resulting in more

informative representation of the data.

Efficient Implementation. To demonstrate that the theoretical reduction in FLOPs can

translate to a real reduction in latency, we implement a simple CUDA kernel for the decomposed

layer. The results are shown in figure 3.7, where we can see that at even moderate pruning

rates there is a noticeable reduction in latency in comparison to the standard convolutional

43

layer. We can also see that a large proportion of the latency is being spent on computing the

template features, while a much smaller proportion comes from the scalar transformation of

these features, which is implemented through a parallelized gather operation.

Original

Ours

Figure 3.7: Latency of the proposed decomposition with an efficient implementation. (left) Compute
time of an original VGG16 network with and without the decomposition at various pruning rates.
(right) Cumulative contribution of each operation on the overall on-device compute time.

3.4 Conclusion and Future work

In this paper, we proposed the use of cheap transformations to reconstruct pruned filters. In-

stead of zeroing out the pruned filters, they are replaced with spatial transformations from the

remaining set of non-pruned filters. These trained networks are able to achieve comparable or

improved results on the image classification task across a range of datasets and architectures,

despite using a simple magnitude based pruning criterion. We also introduce a grouped ex-

tension that can mitigate excessive feature compression at a minimal computational cost. Our

approach applied to VGG16, ResNet34 and ResNet50 is able to significantly reduce the models

size and computational cost while retaining the top recognition accuracy on CIFAR-10 and

ImageNet-1K datasets.

Future research may explore potential applications in localization tasks that rely on equivariant

features. Additionally, another promising direction is in data-efficient training. By incorpo-

rating hand-crafted transformations and leveraging prior knowledge of the data, it becomes

possible to eliminate the necessity for the network to learn this information.

44

Chapter 4

Cascaded Channel Pruning using

Hierarchical Self-Distillation

We propose an approach for filter-level pruning with hierarchical knowledge distillation based

on the teacher, teaching-assistant, and student framework. Our method makes use of teaching

assistants at intermediate pruning levels that share the same architecture and weights as the

target student. We propose to prune each model independently using the gradient information

from its corresponding teacher. By considering the relative sizes of each student-teacher pair,

this formulation provides a natural trade-off between the capacity gap for knowledge distillation

and the bias of the filter saliency updates. Our results show improvements in the attainable

accuracy and model compression across the CIFAR10 and ImageNet classification tasks using

the VGG16 and ResNet50 architectures. We provide an extensive evaluation that demonstrates

the benefits of using a varying number of teaching assistant models at different sizes.

4.1 Introduction

It has been shown that CNNs exhibit significant redundancy, which has led to the development

of various pruning techniques. Such methods attempt to identify and remove these redundant

weights, which leads to improved memory and computational efficiency with minimal degrada-

45

tion in task accuracy. However, although pruning individual weights [93, 94] can achieve very

high levels of sparsity i.e., parameter reduction, the irregular pruning is ill-suited for standard

hardware accelerators. In contrast, channel pruning naturally addresses this issue by removing

entire convolutional filters.

Most pruning pipelines use rule-based annealing schedules, with intermediate pruning and fine-

tuning cycles. We instead jointly train both the set of pruning masks and weights in the same

phase. To do this, we first propose a surrogate gradient for the importance scores of each filter,

which are updated using standard back-propagation. The binary filter mask is then computed

using a global threshold on these scores to achieve a given target compression. We propose

a formulation for the updates of this importance score by extending the idea of ”teaching-

assistants” (TA) for knowledge distillation [127]. To enable the contribution of previously

pruned filters to be re-considered into the student network, we use the gradients from a lesser-

pruned TA, thus providing gradients from a model with a higher capacity. We describe the use

of passing down surrogate gradients from the TAs to update the pruning masks as cascaded

pruning, since the pruning is performed in a sequential fashion starting from the largest model

in the hierarchy.

Each TA must also share the same set of weights as the student and have the same architecture

to reduce the inherent bias in this surrogate gradient term. Using this formulation, we are able

to build a hierarchy of student-teacher pairs from the same network (see figure 4.1) and by

considering the relative sizes of each pair, provide a natural trade-off between the bias of the

filter saliency gradients and the capacity gap for knowledge distillation. The additional benefit

for sharing weights between the student model and all the TA’s is a significant reduction in the

memory overhead. Having disjoint TA’s does not scale well and requires a set of pre-trained

models, at appropriate relative sizes, to be readily available.

We extensively evaluate our approach for widely used state of the art networks and datasets.

For the VGG16 [165] architecture trained on the CIFAR10 dataset, we are able to achieve a

1.9× reduction in parameters and a 2.3× reduction in FLOPs, while improving upon its top-1

% accuracy (see table 4.1). We also consider ResNet50 [68] on the ImageNet2012 classification

46

logits

d
istillation

im
portance score update

pruned filter

unpruned filter

Figure 4.1: Proposed hierarchical self-distillation (HSD) strategy for channel pruning. Each of the
models are jointly trained with shared convolutional weights but with independent binary masks,
batch normalisation layers, and classification layers. The lesser constrained models provide knowledge
distillation and importance score gradients down the hierarchy. The frozen teacher for model TN has
been omitted for clarity.

task, in which we are able to achieve a 3.6× reduction in parameters and a 3.7× reduction in

FLOPs for a 2.5% drop in accuracy, which is very significant at this high level of compression

(see table 4.2).

4.2 Related Work

Filter pruningmethods attempt to remove both the feature maps/channels and corresponding

filters that have the least positive contribution to the network accuracy. These techniques lead

to a structured sparsity in the weights that can directly reduce the number of dense matrix

multiplications needed and result in improved on-device performance with standard consumer

hardware.

Pruning filters based on their absolute response magnitude was proposed in [95], while [70]

performed the pruning with channel selection based on a LASSO-regression. In [113] the

47

pruning of a given layer is guided by subsequent layer statistics. Similarly, NISP [202] formulates

the pruning problem as a binary integer program by which the error-propagation across layers

is considered. Discrimination-aware losses were proposed by [221] for selecting channels based

on their discriminative power. Probabilistic methods have also been explored for measuring

the importance of filters through Bayesian inference and sparsity-inducing priors [217, 214].

Network pruning can also be modeled as a Neural Architecture Search (NAS) problem, whereby

the depth of each layer is incorporated into the design space. AutoSlim [199] proposed the

training of a single slimmable network that is iteratively slimmed and evaluated to ensure

minimal accuracy drop, while MorphNet [57] optimizes the model using shrinking and cycle

phases. The inefficient filters are then removed using sparsifying regularizers.

In a different approach [146] demonstrated the existence of sparse subnetworks within the large

model, with randomly-initialised weights that can achieve high accuracy without any training.

They identified this ”super mask” using a straight-through estimator for the importance scores

of each weight entry. We extend their method in evaluating this mask for the case of pruning

entire filters.

Knowledge distillation was originally proposed by [72] to allow a smaller network to learn

the correlations between classes from the output of a larger pre-trained teacher model. This

work was extended in [151] by using intermediate representations as hints to the student.

They approached this by minimising the L2 distance between the student and teacher’s feature

maps. It was shown in [127] that the student’s performance can degrade if the gap between

the student and the teacher is too large. They proposed to use intermediate teaching-assistants

to distill knowledge between the teacher and the student. Each of these models used a dif-

ferent architecture and had an independent set of weights. Slimmable neural networks [201]

defined a network that is executable at different widths through jointly training subsets of uni-

formly slimmed models. The smaller models benefited from the shared weights and the implicit

knowledge distillation provided. We further demonstrate the effectiveness of this knowledge

distillation between shared models, but instead independently prune each model using learned

pruning masks.

48

Efficient architectures incorporate the efficiency and accuracy metrics into the initial archi-

tectural design choices. MobileNetV1 [76] proposed to use depthwise separable layers, which

decomposes the 2D convolution operation into two subsequent operations for local spatial and

channel aggregation. These layers have been efficiently integrated into all commonly used deep

learning frameworks including Inceptions models [168], and all the MobileNet variants [76, 53,

75]. MobileNetV2 [53] proposed a linear bottleneck and an inverted residual connection to en-

force feature re-use. ShuffleNet [211] built upon this idea by using group pointwise convolutions

followed by a shuffle operation for enabling cross-group information flow. EfficientNets [169]

use compound scaling for uniformly scaling a network’s depth, resolution, and width to yield

very efficient network architectures. All of these low-rank decomposition methods are com-

plimentary to channel pruning and can be combined with our proposed method for further

improvements.

4.3 Method

In this section, we first provide the formulation for a typical pruning problem and then describe

our cascade approach for pruning entire filters through incorporating knowledge distillation,

based on the student, teaching-assistant, and teacher paradigm.

Formulation The pruning objective can be described through the use of a binary mask

M ∈ {0, 1}|W| that is applied to the weights. Although this mask can span all the weights

in the network, we restrict our attention to the convolutional layers as they contribute most

significantly to the overall computational cost. The objective of pruning is then to learn a

small subset of weights that can achieve comparable performance to the original model. These

conditions can be described as follows:

L(f(X ,W ·M)) ≈ L(f(X ,W)),
∥M∥0
|W|

= p (4.1)

Where p ∈ [0, 1] is a pre-defined pruning ratio that controls the trade-off between the number

of used weights, the computational complexity, and the expressiveness of the model.

49

Finding the optimal mask The binary mask M disables the least ”important” weights. To

identify these weights we introduce an importance score γ ∈ IR|W|. This score can be evaluated

using a set of static criteria [93, 69] or integrated directly into the learning procedure. The

benefit of the latter approach is that the network can capture the complex mutual activations

and dependencies of the weights. For example, some of the weights may only be important if

another set of weights are enabled or vice-versa.

We model the importance score γ as a differentiable weight for which we can compute the

binary mask M. A pruning threshold is then defined as the smallest top-p% of the importance

scores across all the convolutional layers. Corresponding weight entries are then conditionally

masked if they are below this threshold. This operation of mapping the importance scores

to the binary mask can be described through the function h : IR|W| → {0, 1}|W|. Since this

function is not differentiable with respect to γ, we adopt the straight through estimator [17, 83]

of its gradients. We also use the derivation from [146] for the γ update rule, which we describe

below. Consider the following masked convolutional layer:

Yh,w,n = X ∗ (W ·M) =

Kh∑
kh

Kw∑
kw

C∑
i

Wkh,kw,i,n · Xh′,w′,i · h(γkh,kw,i,n), (4.2)

where h′ = h+Kh − ⌈Kh

2
⌉ and w′ = w+Kw − ⌈Kw

2
⌉ with Kh and Kw being the kernels height

and width respectively. We also use ∗ to denote the discrete convolution operator and · is used

for the element-wise product. The weights in this equation are represented as a 4-dimensional

tensor W ∈ IRK×K×C×N , where K × K is the filter size and C, N are the number of input

and output channels respectively. The γ update can then be computed using the chain rule

∂L/∂γ = ∂L/∂Y · ∂Y/∂γ.

Due to the previously described practical performance constraint of hardware accelerators, we

depart from this general formulation and instead consider pruning entire filters rather than

individual weight entries. This results in the binary mask and importance scores for each layer

being reduced to N -dimensional vectors, where N is the number of filters in the layer. The

50

original ∂Y/∂γ term is then also reduced by summing over the spatial and input-channel axes

as shown in equation 4.3. In light of this modification, we use k to refer to the ratio of pruned

filters, as opposed to p which was used for the ratio of individually pruned weights.

∂Y
∂γ n

=
W∑
w

H∑
h

K∑
kh,kw

C∑
i

Wkh,kw,i,n · Xh′,w′,i =
W∑
w

H∑
h

W ∗ X , (4.3)

with K = Kw = Kh to simplify notation but without any loss in generality. The final update1

for γ is given as follows:

γ′ = γ − α
W∑
w=1

H∑
h=1

∂L
∂Y

· (X ∗W) (4.4)

Each filter is assigned an importance score that is related to their weighted contribution in

decreasing the task loss L. We expect that incorporating the practical performance metrics

into this loss could improve the results, however, we show that using the task loss only is

sufficient in providing an excellent accuracy vs model size reduction trade-off.

Shared teaching assistants An effective use of knowledge distillation requires a set of

models with different capacities, strong task accuracy, and with high levels of diversity between

them. Each model can then provide supervision to the smaller models through knowledge

distillation. In this section, we describe a method for generating this diverse set from the same

pre-trained model.

We can uniquely define a model from the same set of weights and architecture through the use

of a binary mask M and its filter pruning ratio k. This allows us to define a set of N models

{Ti ∈ (Mi, ki) | 0 ≤ i < N} where ki > ki+1 and kN−1 = 0. We expect that the model Ti+1 is

able to distill knowledge to Ti since this model has a larger expressive power. We define the T0

model to be the student and {Ti | 1 ≤ i < N − 1} to be the set of teaching-assistants (TAs).

1Tensorflow [1] internally computes all of the gradients and implements these update rules.

51

Model Ti+1 acts as the teacher for the more constrained model Ti, while the teacher for model

TN−1 is derived from the original pre-trained model with frozen weights.

Each of these models has an independent set of importance scores for each filter, batch nor-

malisation statistics, and classification layers. Independent batch normalisation layers were

originally proposed in Yu et al. [201] for networks that are executable at different widths, while

the independent classifications layers are needed to enable sufficient diversity between the mod-

els. Figure 4.1 shows this proposed cascaded pruning method using a hierarchy of shared TA

models.

Sharing the convolutional weights between the teaching-assistants and the student significantly

reduces the training memory overhead while providing implicit knowledge distillation [201]. We

further conjecture that the set of important filters for model Ti+1 should also be important for

model Ti if ki ≈ ki+1. Thus, we propose that for each student-teacher pair, we can use the

importance score gradients from the teacher to update the student. The proposed modification

can be reflected in the γ update rule:

γ′
i = γi − α

W∑
w=1

H∑
h=1

∂Li+1

∂Yi+1

· (Xi+1 ∗W) (4.5)

Where the subscript i is used to indicate the ith model in the hierarchy. By updating γi using

its corresponding teacher, we are making an assumption that ∂Li/∂γi ≈ ∂Li+1/∂γi+1 or to the

very least their sign is the same; which would indicate that the update is moving the importance

score in the right direction for Ti. The benefit of this proposed formulation is twofold:

• Since both the models share the same weights, the teacher’s gradient should be a reason-

able estimator for the student.

• The teacher has a lower pruning ratio k and can thus can provide knowledge distillation

to the student.

Consider the case where a filter has been pruned away by model Ti, but not by model Ti+1.

In the original formulation, this will result in the corresponding channels being zeroed out

52

in Xi for the next layer and thus not considered in any of its γ updates. In contrast, using

the proposed modified update rule from equation 4.5 will enable the student to consider the

weighted contribution of this filter to the loss even if it is currently below the pruning threshold.

When the TA is much larger than the student, the bias of the gradient estimate will be too

large and the updates will span a large set of importance scores, which makes the convergence

of a suitable mask for the student very difficult. By ensuring each teacher is sufficiently large

to provide useful knowledge distillation, while being sufficiently small such that this gradient

update is stable, very effective training can emerge. This result is most noticeable at large

pruning rates and evaluated further in section 4.5.

Knowledge distillation Supervised classification uses the cross-entropy loss H(·, ·) between

the softmax logits of the network ys and the one-hot encoded ground truth labels yGT . On

the other hand, knowledge distillation uses the KL divergence between the output logits of a

teacher model yt and the student ys [72]. The student can then learn the correlations between

classes from the teacher’s predictions. A temperature term τ can also be used to soften the

output probabilities to compensate for the different network capacities. The loss for the student

is then formulated as the weighted combination of these two terms. Hinted losses [151] provide

teacher-student supervision for the intermediate representations. For this, we consider the

simple reconstruction error term [221] between feature maps.

Although sharing of convolutional weights does provide some level of implicit knowledge dis-

tillation between models, we find that providing additional explicit knowledge distillation and

hints from TN down to T0 improves the performance of the student. We use the hint losses on

the last few layers of the network, while for the knowledge distillation we use the KL divergence

between the softened output probabilities of each teacher-student pair. The hyper-parameters

λKD and λH are used to scale the KD and hint losses, respectively.

53

4.4 Experiments

In this section, we empirically validate the cascaded pruning approach on CIFAR10, CI-

FAR100 and ImageNet 2012 classification tasks, in which we consider the VGG16 [165]. Mo-

bileNetV1 [76] and ResNet50 [68] architectures respectively. The hint loss is placed in the last 3

layers of VGG16 network and the last 3 residual blocks of ResNet50. For the first convolutional

layer in each network, we do not use any masking and keep an independent set of weights for

each model.

0 25 50 75 100 125 150 175 200
Epoch

Top-1 Accuracy %

T0 T1 T2 T3

0 25 50 75 100 125 150 175 200
Epoch

20

40

60

80

Top-1 Accuracy %

T0 T1 T2 T3

Method Params FLOPs Top-1 Accuracy (%)
Original 3.89M 495M 74.10%
HSD-0.2 2.95M 376M ↓ 0.29%
HSD-0.5 1.77M 156M ↓ 1.42%
HSD-0.7 0.38M 75M ↓ 3.69%

Figure 4.2: Left: Top-1 accuracy’s of each model across the joint training step and the fine-tuning
step. The training consists of one student T0 and 3 TA’s that are trained on the CIFAR10 dataset.
Right: Accuracy and performance comparisons on the CIFAR100 dataset using the MobileNetV1
model.

The training process is decomposed into two steps; namely, the joint model training and the

fine-tuning. The first step consists of jointly training all of the models on the same task, while

updating their pruning masks using the proposed formulation in equation 4.5. The second step

is where we only train the student model with the final frozen binary mask. In this latter stage,

the KD and hint loss between the corresponding teacher and the student are still used, but

the teacher is replaced with the next subsequent teaching-assistant in the hierarchy when the

student starts to outperforms it on the target task. Figure 4.2 (left) shows these two training

steps and we observe that this incremental fine-tuning step is vital to recover the student’s

accuracy after the previous joint training. The smaller models also experience much higher

variance in their validation accuracy during the first stage as the enabled filters are constantly

changing. After a suitable number of epochs, these student model naturally converge on a

strong mask/weight initialisation for the subsequent fine-tuning step.

54

For calculating the number of parameters and the computational cost in terms of floating-point

operations (FLOPs), we consider just the convolutional layers and the dense layers, without

the biases. The batch normalisation layers are not considered as they are typically fused with

the previous convolutional weights, while the residual addition and bias terms have a negligible

contribution to the total FLOPs. Since we adopt filter pruning, these theoretical FLOP metrics

should naturally translate to reduced inference time.

Implementation details All our experiments are implemented in Tensorflow [1] with an

NVIDIA 2080Ti GPU. We use SGD as the optimizer with a weight decay of 0.0004 and mo-

mentum of 0.9. We use a cosine learning rate schedule with an initial learning rate of 0.008, 5

epochs per cycle, and an exponential decay. For a given model, we fix its filter pruning ratio

k and use λKD = 0.4, λH = 0.001, and τ = 15.0. Effective knowledge distillation is not only

dependant on these loss weights, but also on the relative sizes of each student-teacher pair and

the number of intermediate TA’s, which is the focus of our attention.

Comparisons on CIFAR10 and CIFAR100 The CIFAR10 dataset [91] consist of 60K 32×

32 RGB images across 10 classes and with a 5:1 training/testing split. The chosen VGG16 [165]

architecture is modified for this dataset by adding independent batch normalisation layers [201]

after each convolution block and by reducing the number of classification layers to two; of depth

512 and 10 respectively. The pre-processing step involves random horizontal flips and center

crops of size 32× 32. We jointly train the models for 80 epochs and then fine-tune the student

for additional 80 epochs with a batch-size of 128. Each model uses a single student and 3

TAs with the filter pruning ratios evenly spaced between from k0 (full pruning) down to 0 (no

pruning). We observe that any reasonably uniform allocation between k0 and 1.0 is sufficient

to balance the gradient bias and the capacity gaps.

Table 4.1 shows the accuracy and performance metrics for the cascaded pruning in comparison

to other channel pruning methods with the same VGG16 architecture. Our results demonstrate

the inherent redundancy in this choice of model for the CIFAR10 task as we are able to achieve

significant compression while improving upon its top-1 % accuracy.

55

Method Top-1 Baseline Accuracy (%) Params FLOPs Top-1 Accuracy (%)
Original 14.98M 313M 93.26%

Variational pruning [214] 93.25% 3.92M 190M ↓ 0.07%
Geometric median [69] 93.53% − 237M ↓ 0.34%
Try-and-learn [80] 92.77% 2.59M 140M ↓ 1.10%

Magnitude pruning [95] 93.25% 5.40M 206M ↓ 0.15%
Discrimination-aware [221] 93.99% 7.80M 157M ↓ 0.17%
Bayesian Pruning [217] 91.60% 0.38M 89M ↓ 0.60%

Hierarchical Self-Distillation 93.25% 7.76M 134M ↑ 0.28%
student pruning rate 93.25% 2.50M 83M ↑ 0.07%
k = [0.3, 0.6, 0.8] 93.25% 0.97M 52M ↓ 0.28%

Table 4.1: Comparison to other filter-level pruning methods on the CIFAR10 benchmark and with
the VGG16 architecture. For each model, the drop in accuracy is with reference to their own baseline.

The CIFAR100 dataset is very similar to CIFAR10, except that it instead contains 100 classes

and with 600 images per class. For this evaluation we consider the efficient MobileNetV1

architecture, whereby the learned pruning masks are only applied on the 1 × 1 convolutional

layers. We use the same number of TA’s and corresponding filter pruning ratios as the CIFAR10

experiments, however, we only fine-tune for the student model for 40 epochs. The results are

shown in table 4.2 (right) and demonstrate the validity of this proposed training methodology

on an already parameter efficient architecture.

56

Top-1 Baseline Top-1 Top-5
Method Accuracy (%) Params FLOPs Accuracy (%) Accuracy (%)
Original 25.5M 3.86B 75.03% 92.11%

Discrimination-aware [221] 76.01 12.38M 1.72B ↓ 1.06% ↓ 0.61%
Bayesian Pruning [217] 76.10 - 1.68B ↓ 3.10% ↓ 2.90%

NISP [202] - 18.58M 2.81B ↓ 0.21% -
Filter Sketch [100] 76.13 14.53M 2.23B ↓ 1.45% ↓ 0.69%

ThiNet [113] 72.88 12.28M 1.71B ↓ 1.87% ↓ 1.12%
25.5M 4.1B ↑ 0.10% -

S-ResNet-50 [201] 76.10 14.7M 2.3B ↓ 1.20% -
[0.25, 0.5, 0.75, 1.0]× 6.9M 1.1B ↓ 4.00% -

2.0M 278M ↓ 11.10% -

Hierarchical Self-Distillation 75.03 7.12M 1.04B ↓ 2.50% ↓ 1.29%

Table 4.2: Top-1 Accuracy and pruning ratios on the ImageNet2012 validation split using the
ResNet50 model. The accuracy drops are reported in comparison to their corresponding baseline.
The calculations for these baseline performance metrics are covered in the supplementary materials.

Comparisons on ImageNet We evaluate cascaded pruning on ResNet-50 [68] for the Im-

ageNet 2012 classification task [155]. Unlike most other pruning strategies [113, 217], we also

prune the projection layers and the last convolutional layer in each residual block. We train the

models for 20 epochs and follow this by 20 epochs of student fine-tuning with a batch-size of 30.

We use one student and 2 TAs with the filter pruning ratios of 0.3, 0.5, and 1.0, respectively.

We follow the same pre-processing step as for the CIFAR10 experiments but with a central crop

of size 224× 224. The results can be seen in table 4.2 and demonstrate strong performance at

high-levels of compression.

We observed that using the original SGD optimizer for the γ updates led to the majority of

the pruning taking place in the last convolutional layer of each residual block, which severely

limited the performance improvements. This outcome was a consequence of the fixed learning

rates across all of the layers and their corresponding importance scores. We replaced SGD with

an adaptive learning rate schedule, namely using RMSProp, whereby we were able to achieve a

more uniform pruning strategy along with faster convergence. To further reduce training time,

we also used an additional intermediate fine-tuning step that lasted 10 epochs and consisted of

jointly training all the models with fixed pruning masks.

57

4.5 Ablation studies

In this section we evaluate the benefit of using multiple teaching-assistants. In the supplemen-

tary material we further provide a comparison against uniformly pruned baselines and evaluate

the impact of using the additional explicit KD loss terms.

Increasing the number of teaching-assistants To evaluate the importance of using the

shared teaching-assistant models, we consider training a student with a varying number of

teaching-assistants. Figure 4.3 shows the task accuracy vs performance trade-offs for training

a student with no TAs, with one TA, and with two TAs. In all of these cases, we use the same

set of pruning ratios k and when no TA is used, the student only receives knowledge distillation

from the fixed pre-trained model. We observe that the student model significantly benefits from

having a TA to distill knowledge from and this is especially significant at the higher pruning

ratios, whereby the difference in capacities between the student and the teacher is large. These

results further demonstrate why a uniform allocation of pruning ratios between k0 and 1.0 is

most suited for training these models; since it minimises the capacity gap between any of the

student-teacher pairs.

50 100 150 200 250
FLOPs (M)

75

80

85

90

Top-1 Accuracy %

2 Assistants 1 Assistant No Assistants

0 2 4 6 8 10 12
Parameters (M)

75

80

85

90

Top-1 Accuracy %

2 Assistants 1 Assistant No Assistants

Figure 4.3: Evaluation of the computational complexity (left) and the number of parameters (right)
for a student model with a varying number of teaching assistants. Each data point on the graph is
ordered according to their pre-defined filter-pruning ratio using the modified VGG16 architecture on
the CIFAR10 dataset.

58

4.6 Conclusion

We proposed cascaded-pruning, that is a channel pruning based method using a set of jointly

trained and shared models. Each model provides both pruning guidance and knowledge dis-

tillation to its corresponding student. Besides the advantages in terms of scalability, cascaded

pruning can achieve strong results without any hand-crafted annealing schedules, or iterative

training and fine-tuning cycles. We demonstrate these results using a simple straight-through

estimator for the pruning mask update, while providing a thorough set of evaluations of their

performance with a varying number of teaching-assistants at different sizes. The results are es-

pecially significant at high-pruning rates, whereby the student benefits from these intermediate

teaching assistants in the fine-tuning stage. We are able to achieve a ∼ 15× compression and

∼ 6× reduction in FLOPs with negligible accuracy degradation using VGG16 on the CIFAR10

dataset. We also consider the much larger ImageNet dataset with ResNet-50, in which compa-

rable or better accuracy v.s. performance is demonstrated against other state-of-the-art filter

pruning methods.

4.7 Supplementary

In this supplementary chapter, we provide more details on the underlying architectures used

and the pruning rates attained for each layer. We also provide ablation experiments for the

distillation losses.

ResNet50 architecture and performance metrics Table 4.3 shows the complexity and

parameter break-down for each layer in the ResNet-50 model with an input size of 224× 224.

Layer-wise pruning Figure 4.4 shows the percentage of pruned filters in each layer for a

student model and two TAs. The student uniformly prunes the layers, while the larger TA

models focus on the last layers. This is in contrast to how most other pruning methodologies

work, which tend to result in significant pruning for the last few layers of the network. Table

4.4 shows how this distribution of pruning levels changes with the filter pruning ratio.

59

Block # w × h #Filters FLOPs Params

224× 224 64 118M 0.01M

0 56× 56 [64, 64, 256] 231M 0.07M
1 56× 56 [64, 64, 256] 218M 0.07M
2 56× 56 [64, 64, 256] 218M 0.07M

3 56× 56 [128, 128, 512] 295M 0.38M
4 28× 28 [128, 128, 512] 218M 0.28M
5 28× 28 [128, 128, 512] 218M 0.28M
6 28× 28 [128, 128, 512] 218M 0.28M

7 28× 28 [256, 256, 1024] 295M 1.51M
8 14× 14 [256, 256, 1024] 218M 1.11M
9 14× 14 [256, 256, 1024] 218M 1.11M
10 14× 14 [256, 256, 1024] 218M 1.11M
11 14× 14 [256, 256, 1024] 218M 1.11M
12 14× 14 [256, 256, 1024] 218M 1.11M

13 14× 14 [512, 512, 2048] 295M 6.03M
14 7× 7 [512, 512, 2048] 218M 4.46M
15 7× 7 [512, 512, 2048] 218M 4.46M

1× 1 1000 2.05M 2.05M

Total: 3.85B 25.5M

Table 4.3: Performance statistics for the ResNet50 architecture on the ImageNet2012 dataset.

0 20 40 60 80 100
Epoch

30
40

50
60
70
80Filter pruning %

1
2
3

4
5
6

7
8

9
10

0 20 40 60 80 100
Epoch

20

40

60

80

100Filter pruning %
1
2
3

4
5
6

7
8

9
10

0 20 40 60 80 100
Epoch

0

20

40

60

80

100Filter pruning %
1
2
3

4
5
6

7
8

9
10

Figure 4.4: The layer-wise pruning for a student and two TA models trained using cascaded pruning.
From left to right are models T0, T1, and T2 respectively. Each TA uses the VGG16 architecture and
is jointly trained on the CIFAR10 dataset.

Uniformly pruned baselines and KD loss terms The empirical results demonstrated by

[109] showed that most channel pruning pipelines achieve comparable or worse performance

to training the equivalent smaller model from scratch. Therefore, to confirm the performance

benefits of our proposed method, we compare our results against individually training two

smaller VGG16 variants from random initialisation. Specifically, we consider using both width

scaling and shuffle units [211]. Width scaling reduces the depth of each layer by a given %, while

a shuffle unit replaces the convolutional layers with group convolutions and channel shuffles.

We use the same training methodology as the original baseline for all these models, which lasts

150 epochs with a cosine learning rate schedule. Liu et al. [109] considered two training schemes

60

Layer # w × h #Filters FLOPs Params Filter pruning

k0 = 0.1 k0 = 0.5 k0 = 0.6 k0 = 0.8

0 32× 32 64 1.77M 1.73K 0% 0% 0% 0%
1 32× 32 64 37.75M 36.86K 8.5% 20.1% 50.8% 89.4%
2 16× 16 128 18.87M 73.73K 1.4% 11.7% 29.6% 83.2%
3 16× 16 128 37.75M 0.15M 40.0% 45.4% 51.1% 67.7%
4 8× 8 256 18.87M 0.29M 17.8% 33.3% 45.3% 63.1%
5 8× 8 256 37.75M 0.59M 11.1% 36.0% 46.1% 77.2%
6 8× 8 256 37.75M 0.59M 37.3% 59.0% 61.2% 86.6%
7 4× 4 512 18.87M 1.18M 30.1% 60.8% 61.5% 73.7%
8 4× 4 512 37.75M 2.36M 0% 29.7% 65.9% 67.3%
9 4× 4 512 37.75M 2.36M 0% 17.0% 56.5% 92.3%
10 2× 2 512 9.44M 2.36M 6.0% 69.0% 75.9% 88.9%
11 2× 2 512 9.44M 2.36M 0% 85.5% 72.4% 81.7%
12 2× 2 512 9.44M 2.36M 0% 63.5% 63.7% 84.1%

13 1× 1 512 0.26M 0.26M 0% 31.8% 31.9% 42.1%
14 1× 1 512 5.12K 5.12K 0% 0% 0% 0%

Table 4.4: Pruning % in each layer as a result of cascaded pruning on the CIFAR10 dataset and
with the VGG16 architecture at varying filter-pruning ratios. The last two layers (13 & 14) are the
two dense classification layers which are not masked.

for these uniformly pruned baseline: training for the same number of epochs as the baseline

and training for the same computational budget. In both cases, the reported accuracy’s were

similar, and in our evaluation we found that further training any of these uniformly pruned

baseline results had little effect on the accuracy.

To provide a thorough evaluation of cascaded pruning, we also consider the impact of using the

explicit KD and hint loss terms between each student-teacher pair. We use only a single TA

Method Params FLOPs Top-1 Accuracy (%)

Baseline 14.98M 313M 93.26%

Standard-0.75 8.48M 184M ↓ 5.69%
Standard-0.5 3.82M 89M ↓ 6.82%
Standard-0.25 1.00M 28M ↓ 11.08%

Group-2 7.62M 158M ↓ 6.46%
Group-4 3.95M 80M ↓ 7.69%

HSD-0.5 None 4.13M 102M ↓ 2.40%
HSD-0.5 w/ KD 3.62M 97M ↓ 0.79%
HSD-0.5 w/ Hints 3.61M 96M ↓ 2.42%

HSD-0.5 w/ KD & Hints 3.69M 99M ↓ 1.27%

Table 4.5: Accuracy and performance metrics for two efficient VGG16 variants trained from random
initialisation on the CIFAR10 dataset. Group-g indicates the use of group convolutions with g groups,
while Standard-s uses s% width scaling for all the convolutional layers.

61

with a filter pruning ratio of 0.5 and set λH = 0.001 and λKD = 0.4 throughout. These complete

sets of results can be seen in table 4.5. In the case where no KD or hinted losses are used,

only implicit knowledge is distilled between the models, as attributed to the sharing of weights

and joint training of all the models. The KD loss term between each teacher-student pair

significantly increases the student’s performance, while the hinted losses damage the student’s

performance. The hinted losses perform poorly in this framework since the enabled filters

are constantly changing through the importance score updates. However, the student models

trained using cascaded pruning still significantly outperform the equivalent smaller models when

trained from scratch. These results demonstrate how the learnt mask structure is an integral

part and contributing factor to the performance of these cascaded pruned networks.

62

Chapter 5

Information Theoretic Representation

Distillation

Despite the empirical success of knowledge distillation, current state-of-the-art methods are

computationally expensive to train, which makes them difficult to adopt in practice. To address

this problem, we introduce two distinct complementary losses inspired by a cheap entropy-like

estimator. These losses aim to maximise the correlation and mutual information between the

student and teacher representations. Our method incurs significantly less training overheads

than other approaches and achieves competitive performance to state-of-the-art on the knowl-

edge distillation and cross-model transfer tasks. We further demonstrate the effectiveness of

our method on a binary distillation task, whereby it leads to a new state-of-the-art for binary

quantisation and approaches the performance of a full precision model. The code, evaluation

protocols, and trained models are made publicly available on GitHub1.

5.1 Introduction

Knowledge distillation proposes an alternative approach whereby a much larger pre-trained

model can provide additional supervision for a smaller model during training. This paradigm

1https://github.com/roymiles/ITRD

63

teacher

student

feature dim

linear

correlation loss mutual information loss

Figure 5.1: Information theoretic representation distillation (ITRD) involves two distinct losses,
namely a correlation loss and a mutual information loss. The former loss maximises the correlation
between the student and teacher, while the latter maximises a quantity resembling the mutual infor-
mation that aims to transfer the intra-batch sample similarity.

removes the restriction of the two models to share the same underlying architecture, thus

enabling hand-crafted designs of the target architecture to meet the imposed resource con-

straints. However, some of the recent state-of-the-art distillation methods, e.g. including the

recent union of self-supervision and knowledge distillation [195, 191], have made it increasingly

expensive to train these student models. To this end, we develop a distillation method with a

low computational overhead.

Information theory provides a natural lens for quantifying the statistical relationship between

these models, and so is a common framework for deriving distillation losses [28, 174]. Hence,

we propose Information Theoretic Representation Distillation (ITRD) as a unified and com-

putationally efficient framework that directly connects information theory with representation

distillation. Specifically, this framework is inspired by the generalised Rényi’s entropy and

makes the training for specific applications more effective. Rényi’s entropy is a generalisation

of Shannon’s entropy and has lead to improvements in other areas [126, 203, 160]. As figure 5.1

shows, we propose to model the distillation task with two distinct loss functions that correspond

to maximising the correlation and mutual information between the student and teacher rep-

resentations. The correlation loss aims to increase the similarity between teacher and student

representations across the feature dimension. Conversely, the mutual information loss aims

to match the intra-batch sample similarity between the teacher and the student. Our results

show a strong accuracy v.s. training cost trade-off in comparison to state-of-the-art across two

64

standard benchmarks, CIFAR100 and ImageNet, for a range of architecture pairings where we

achieve up to 24.4% relative improvement. Our loss directly addresses the training efficiency

problem, which we believe will encourage its adoption amongst machine learning researchers

and practitioners. We further demonstrate the effectiveness of this framework on representation

transfer and binary network transfer, whereby we are able to improve upon the state-of-the-art

for both.

5.2 Related Work

Knowledge Distillation (KD) attempts to transfer the knowledge from a large pre-trained

model (teacher) to a much smaller compressed model (student). This was originally introduced

in the context of image classification [72], whereby the soft predictions of the teacher can act

as pseudo ground truth labels for the student. The soft predictions then provide the student

with supervision on the correlations between classes which are not explicitly available from

one-hot encoded ground truth labels. Spherical knowledge distillation [59] proposes to re-scale

the logits before KD to address the capacity gap problem, while Prime-Aware Adaptive Distil-

lation [212] introduces an adaptive sample weighting. Hinted losses provide a natural extension

of KD using an L2 distance between the student and teacher’s intermediate representation [151].

Attention transfer [207] proposed to re-weight the spatial entries before the matching losses,

while neuron selectivity transfer [81], similarity-preserving KD [182], and relational KD [137]

attempt to transfer the structural similarity. Similarly, FSP matrices [198] attempt to capture

the flow of information and Review KD [29] propose the use of attention based and hierarchi-

cal context modules. KD can also be modelled directly within a probabilistic framework [3,

138] through estimating and maximising the mutual information between the student and the

teacher. ICKD [105] propose to transfer the correlation between channels of intermediate repre-

sentations. A natural extension of supervised contrastive learning in the context of knowledge

distillation was proposed in CRD [174]. WCoRD [28] also use a contrastive learning objective

but through leveraging the dual and primal forms of the Wasserstein distance. CRCD [218]

further develop this contrastive framework through the use of both feature and gradient infor-

65

mation. Unfortunately, all of these contrastive methods require a large set of negative samples,

which are sampled from a memory bank. The use of these memory banks incurs additional

memory and computational costs, which we avoid altogether.

Additional self-supervision tasks have shown strong performance when coupled with representa-

tion distillation. Both SSKD [191] and HSAKD [195] introduce auxiliary tasks for classifying the

rotation of images. However, these approaches incur a high training cost due to the added self-

supervision task, which augments the training batches and adds additional classifiers. Weight

sharing through jointly training sub-networks has also been shown to provide implicit knowl-

edge distillation [201, 119, 200] and promising results. In this work, we propose two distinct

distillation losses applied to the features before the final fully-connected layer. Similarly to

CRD [174], we posit that the logit representations lack relevant structural information that

is necessary for effective distillation through the low dimensional embedding, while using the

earlier intermediate representations can hinder the downstream task performance.

Information Theory (IT) provides a natural lens for interpreting and modelling the statis-

tical relationships between intermediate representations of a neural network. This intersection

of information theory and deep learning has subsequently led to a rigorous foundation in un-

derstanding the dynamics of training [2, 178], while also offering fruitful insights into other

application domains, such as network pruning and knowledge distillation. In the context of

representation distillation, most losses can be modelled as maximising some lower bound on

the mutual information between the student and the teacher [174, 28]. In this work, we pro-

pose to forge an alternative connection between knowledge distillation and information theory

using infinitely divisible kernels [19]. Specifically, we show that maximising both the correla-

tion and mutual information yields two complimentary loss functions that can be related to

these entropy-like quantities. We achieve this using a matrix-based function that closely resem-

bles Rényi’s α-entropy [157, 158, 189], which is in turn a natural extension of the well-known

Shannon’s entropy used in IT. More recently, this work has been applied in the context of

representation learning [205] for parameterising the information bottleneck principle.

66

5.3 Preliminaries

Representation Distillation describes the family of distillation methods which use the

representation space that is given as the input to the final fully connected layer of a model. The

generalised loss used for representation distillation can be concisely expressed in the following

form:

L =LXE(y, softmax(ys)) + β · d(zs, zt), (5.1)

where zs ∈ IRds and zt ∈ IRdt are the student and teacher representations, β is a loss weighting,

and d is the distillation loss function. The cross entropy between labels y and student logits ys,

i.e., LXE above, can be defined as the sum of an entropy and KL divergence term. Furthermore,

standard KD [73] uses an additional KL divergence as the distillation loss between the student

and teacher logits, with a temperature term that can soften or sharpen the two distributions.

Following [174], the motivation for using the feature representation space, as opposed to logits

or any of the intermediate feature maps is two-fold. Firstly, this space preserves the structural

information about the input, which may be lost through the low-dimensional embedding of

the final layer. Secondly, intermediate feature matching losses may negatively impact the

students’ downstream performance in the cross-architecture tasks due to differing inductive

biases [174], while also incurring significant computational and memory overheads due to the

high-dimensionality of these feature maps.

In our work, to maximize the information transfer, we propose to express the distillation loss

d(., .) as the weighted sum of a correlation and mutual information term. Below we link these

two terms to a general formulation of entropy [158].

Information Theory Rényi’s α-entropy [150] provides a natural extension of Shannon’s

entropy, which has been successfully applied in the context of differential privacy [126], un-

derstanding autoencoders [203], and face recognition [160]. For a random variable X with

67

probability density function (PDF) f(x) in a finite set χ, the α-entropy Hα(X) is defined as:

Hα(f) =
1

1− α
log2

∫
χ

fα(x)dx, (5.2)

where the limit as α → 1 is the well-known Shannon entropy. We restrict our attention to the

discrete relaxation of this definition which more closely resembles the conventional definition

of entropy in information theory. More concretely, for a discrete random variable X, Rényi’s

α-entropy Hα(X) and Shannon’s entropy H(X) are given as follows:

Hα(X) =
1

1− α
log2

∑
x∈X

p(x)α (5.3) H(X) =
∑
x∈X

p(x) log2 p(x) (5.4)

Since we wish to avoid the need for evaluating the underlying probability distributions, we

propose to use a set of entropy-like quantities that closely resemble Renyi’s entropy[158, 189]

and are estimated directly from the data. These quantities depart from any conventional

perspective in information theory, but are intimately connected through Rényi’s axioms. They

are based on the theory of infinitely divisible matrices and leverage the representational power

of reproducing kernel Hilbert spaces (RKHS), which have been widely studied and adopted in

classical machine learning. Since its fruition, this framework has been applied in understanding

convolutional neural networks (CNNs) [204], whereby they verify the important data processing

inequality in information theory and further demonstrate a redundancy-synergy trade-off in

layer representations. We propose to apply these estimators in the context of representation

distillation, although they can also be applied in the context of network pruning.

In the following section, we provide definitions of the entropy based quantities and their con-

nections with positive semidefinite matrices. This idea then naturally leads to a multi-variate

extension using Hadamard products, from which conditional and mutual information can be

defined. For brevity, we omit the proofs and connections with Rényi’s axioms, which can be

found in [158] and [189].

68

Definition 1 : LetX = {x(1), . . . x(n)} be a set of n data points of dimension d and κ : X×X → IR

be a real valued positive definite kernel. The Gram matrix K is obtained from evaluating κ on

all pairs of examples, that is Kij = κ(xi, xj). The matrix-based analogue to Rényi’s α-entropy

for a normalized positive definite (NPD) matrix A of size n × n, such that tr(A) = 1, can be

given by the following functional:

Sα(A) =
1

1− α
log2(tr(A

α)) (5.5)

=
1

1− α
log2

[
n∑

i=1

λi(A
α)

]

where A is the kernel matrix K normalised to have a trace of 1 and λi(A) denotes its i-th

eigenvalue. This estimator can be seen as a statistic on the space computed by the kernel κ,

while also satisfying useful properties attributed to entropy. In practice, the choice of both

κ and α can be governed by domain specific knowledge, which we exploit for the task of

knowledge distillation. The log in these definitions, which is conventionally taken as base 2, can

be interpreted as a data-dependant transformation, and its argument is called the information

potential [157]. In the context of optimisation, the information potential and entropy definitions

can be used interchangeably since they are related by a strictly monotonic function.

We are interested in the statistical relationship between two sets of variables, namely the

student and teacher representations. To measure this relationship, we introduce the notion of

joint entropy, which naturally arises using the product kernel.

Definition 2 : Let X and Y be two sets of data points. After computing the corresponding

Gram matrices A and B, the joint entropy is then given by:

Sα(A,B) = Sα

(
A ◦B

tr(A ◦B)

)
(5.6)

where ◦ denotes the Hadamard product between two matrices. Using these two definitions, the

notion of conditional entropy and mutual information can be derived. We focus on the mutual

69

information, which is given by:

Ĩα(A;B) = Sα(A) + Sα(B)− Sα(A,B), (5.7)

where Ĩ is used to denote this notion of mutual information. Both equation 5.6 and 5.7 form a

foundation for the correlation and mutual information losses respectively, which are proposed

in the following section.

5.4 Information Theoretic Loss Functions

In this section we introduce two distillation losses that use two distinct and complimentary

similarity measures between the student and teacher representations. The first loss uses a

correlation measure which captures the similarity across the feature dimension, while the second

loss is derived from a measure of mutual information and captures the similarity between

examples within the mini-batch.

Maximising correlation This first loss attempts to correlate the student and teacher rep-

resentations. The intuition is that if the two sets of representations are perfectly correlated

then the student is at least as discriminative as the teacher. Let Zs ∈ IRn×d and Zt ∈ IRn×d 2

denote a batch of representations from the student and teacher respectively. These matrices

are computed before the final fully-connected layer to preserve the structural information of

the data, thus enabling a strong distillation signal for the student. We first normalise these

representations to zero mean and unit variance across the batch dimension and then propose

to construct a cross-correlation matrix, Cst = ZT
s Zt/n ∈ IRd×d. Perfect correlation between the

two sets of representations is achieved if all of the diagonal entries vi = (Cst)ii are equal to one.

2For clarity, we omit a linear embedding layer used on the student representations to match its dimensionality
with the teacher.

70

To formulate this as a minimization problem, we propose the following loss:

Lcorr = log2

d∑
i=1

|vi − 1|2α (5.8)

This general objective is motivated by the recent work on Barlow Twins [209] for self-supervised

learning, however, there are several distinct differences. Firstly, we drop the redundancy re-

duction term, which minimizes the off-diagonal entries in the cross correlation matrix, since we

are not jointly learning both representations, i.e., the teacher is fixed. In fact we observed that

this objective significantly hurts the performance of the student. This performance degradation

was similarly observed when decorrelating the off-diagonal entries in the self-correlation matrix

Css, and is likely a consequence of the limited model capacity. Secondly, we introduce an α pa-

rameter, which provides a natural generalisation to emphasise low or highly correlated features.

Finally, the log2 transformation was empirically shown to improve the performance by reducing

spurious variations within a batch. These modifications were not only empirically justified, but

also provide a closer relationship with the matrix-based entropy function in equation 5.5, which

is discussed next.

Relationship to joint entropy. The objective from equation 5.8 closely resembles maximising

log2
∑

i vi. However, although these two objectives share the same optimum solution, the

flexibility in tuning the sharpness of the loss with α proved very effective. If we consider the

self correlation matrices Css and Ctt, the diagonal entries in (Css ◦Ctt)
2 3 will be populated

with products of pairs of cross-correlation terms between Zs and Zt. This matrix construction

can then be used in equation 5.6 to compute the joint α-order entropy between the student

and the teacher, where α = 2. In the case where the features are strictly independent, i.e.,

(Css)ij = (Ctt)ij = 0 ∀ i ̸= j, the objective of the proposed loss in equation 5.8 and maximising

this joint entropy are equivalent. In the more general setting, the joint entropy formulation

maximises the correlation between all pairs of exemplars, while our proposed loss only maximises

the correlation along the leading diagonal of Cst.

3This exponent denotes the square of a matrix, rather than an element-wise operation.

71

Correlation v.s. Gram matrices. The connection to joint entropy is limited in that the matrices

used are correlation matrices as opposed to Gram matrices in equation 5.6. This is an important

distinction since in this loss we wish to capture the similarity across the feature-dimension as

opposed to the batch-dimension. However, despite this distinction, there is still an intimate

connection between these two matrices. As discussed in the recent work on cross-covariance

attention [50], the non-zero part of the eigenspectrum of the Gram and covariance matrices are

equivalent. Since the entropy-like formulation described in equation 5.5 is a spectral function

of A, the two resulting quantities are in turn closely related.

Maximising batch-wise similarity The correlation loss aims to match the information

present in each feature dimension between the teacher and student representations. The gram

loss provides an additional complimentary objective whereby we transfer the intra-batch simi-

larity (i.e., the relationship between samples) from the teacher representations to the student

representations. The natural choice for achieving this through the lens of information theory is

to maximise the mutual information between the two representations. Maximising the mutual

information has been successfully applied in past distillation methods [3], following the idea

that a high mutual information indicates a high dependence between the two models and thus

resulting in a strong student representation. Most others work relate their distillation losses to

some lower bound on mutual information [174], however, using an alternative cheap entropy-like

estimator, we propose to maximise this quantity directly.

Lgram = −Ĩα(Gs;Gt)

= Sα(Gs,Gt)− Sα(Gs)−����Sα(Gt) (5.9)

where Gs ∈ IRn×n and Gt ∈ IRn×n are the student and teacher Gram matrices (i.e., A and B in

equation 5.7). These matrices are constructed using a batch of normalised features Zs and Zt

with a polynomial kernel of degree 1. The resulting matrix is subsequently normalised to have a

trace of one. The teacher entropy term in this loss is omitted since the teacher weights are fixed

during training. Substituting the marginal and joint entropy definitions from equations 5.5 and

72

5.6, with Gst = Gs ◦Gt (normalised to have a trace of one), leads to

Lgram =
1

1− α
log2

n∑
i=1

λi (G
α
st)−

1

1− α
log2

n∑
i=1

λi (G
α
s) (5.10)

Where Gst is also normalised to have unit trace. Since computing the eigenvalues for lots of

large matrices can be computationally expensive during training [86], we restrict our attention

to α = 2. This allows us to use the Frobenius norm as a proxy objective and one of which has

a connection with the eigenspectrum - ∥A∥2F ≥
∑n

i=1 λ
2
i (A).

Lgram = log2 ∥Gs∥2F − log2 ∥Gst∥2F (5.11)

In practice, we observed that removing the log transformations improved the performance,

thus resulting in a slight departure from the connection to the surrogate mutual information

quantity defined in equation 5.7. Specifically, this loss instead minimises the distance between

the marginal and joint information potential, rather than the mutual information.

Combining the two losses Both the proposed losses provide two different learning objec-

tives. Maximising the correlation is applied across the feature dimension, thus ensuring that

the students average representation across the batch is perfectly correlated with the teacher.

On the other hand, maximising the mutual information encourages the same similarity between

samples as from the teacher. These two losses effectively operate distinctly over the two di-

mensions of the representations, namely the feature-dim and the batch-dim. The final loss for

which we aim to minimise is given as follows:

LITRD = LCE + βcorrLcorr + βgramLgram (5.12)

where LCE is a standard cross-entropy loss, while βcorr and βgram are hyperparameters to weight

the losses. To demonstrate the simplicity of our proposed method, and similarly to past works

[209], we provide the PyTorch-based pseudocode in algorithm 1.

73

Listing 5.1: PyTorch-style pseudocode for ITRD

1 # f_s: Student network

2 # f_t: Teacher network

3 # y: Ground -truth labels

4 # y_s , y_t: Student and teacher logits

5 # z_s , z_t: Student and teacher representations (n x d)

6 for x in loader:

7 # Forward pass

8 z_s , y_s = f_s(x)

9 z_t , y_t = f_t(x)

10 z_s = embed(z_s)

11 # Cross entropy loss

12 loss = cross_entropy(y_s , y)

13

14 # Normalise representations

15 z_s_norm = (z_s - z_s.mean (0)) / z_s.std (0)

16 z_t_norm = (z_t - z_t.mean (0)) / z_t.std (0)

17 # Compute cross -correlation vector

18 v = einsum(’bx ,bx→x’, z_s , z_t) / n

19 # Compute correlation loss

20 dist = torch.pow(v - torch.ones_like(v), 2)

21 h_st = torch.log2(torch.pow(dist , alpha).sum())

22 loss += h_st.mul(beta_corr)

23

24 # Compute Gram matrices

25 z_s_norm = normalize(z_s , p=2)

26 z_t_norm = normalize(z_t , p=2)

27 g_s = einsum(’bx,dx→bd’, z_s_norm , z_s_norm)

28 g_t = einsum(’bx,dx→bd’, z_t_norm , z_t_norm)

29 g_st = g_s * g_t

30 # Normalize Gram matrices

31 g_s = g_s / torch.trace(g_s)

32 g_st = g_st / torch.trace(g_st)

33 # Compute the gram loss

34 p = g_s.pow (2) - g_st.pow(2)

35 loss += p.sum().mul(beta_gram)

36

37 # Optimisation step

38 loss.backward ()

39 optimizer.step()

5.5 Experiments

We evaluate our proposed distillation across two standard benchmarks, namely the CIFAR-

100 and ImageNet datasets. To further demonstrate the effectiveness of our loss, we perform

additional experiments on the transferability of the students representations and on distilling

from a full-precision model to a binary network. For all of these experiments, we jointly train

the student model with an additional linear embedding for the student representation. This

embedding is used for the correlation loss and is shared by the mutual information loss when

there is a mismatch in dimensions between the student and the teacher.

Experiments on CIFAR-100 classification [91] consist of 60K 32× 32 RGB images across

100 classes and with a 5:1 training/testing split. The results are shown in table 5.1 for a range

74

Teacher W40-2 W40-2 R56 R110 R110 R32x4 V13 V13 R50 R50 R32x4 R32x4 W40-2
Student W16-2 W40-1 R20 R20 R32 R8x4 V8 MN2 MN2 V8 SN1 SN2 SN1

Teacher 75.61 75.61 72.32 74.31 74.31 79.42 74.64 74.64 79.34 79.34 79.42 79.42 75.61
Student 73.26 71.98 69.06 69.06 71.14 72.50 70.36 64.60 64.60 70.36 70.50 71.82 70.50

KD [72] 74.92 73.54 70.66 70.67 73.08 73.33 72.98 67.37 67.35 73.81 74.07 74.45 74.83
FitNet [151] 73.58 72.24 69.21 68.99 71.06 73.50 71.02 64.14 63.16 70.69 73.59 73.54 73.73
AT [207] 74.08 72.77 70.55 70.22 72.31 73.44 71.43 59.40 58.58 71.84 71.73 72.73 73.32
SP [182] 73.83 72.43 69.67 70.04 72.69 72.94 72.68 66.30 68.08 73.34 73.48 74.56 74.52
CC [140] 73.56 72.21 69.63 69.48 71.48 72.97 70.71 64.86 65.43 70.25 71.14 71.29 71.38
RKD [137] 73.35 72.22 69.61 69.25 71.82 71.90 71.48 64.52 64.43 71.50 72.28 73.21 72.21
PKT [138] 74.54 73.45 70.34 70.25 72.61 73.64 72.88 67.13 66.52 73.01 74.10 74.69 73.89
FT [87] 73.25 71.59 69.84 70.22 72.37 72.86 70.58 61.78 60.99 70.29 71.75 72.50 72.03
NST [81] 73.68 72.24 69.60 69.53 71.96 73.30 71.53 58.16 64.96 71.28 74.12 74.68 74.89
CRD [174] 75.64 74.38 71.63 71.56 73.75 75.46 74.29 69.94 69.54 74.58 75.12 76.05 76.27
WCoRD [28] 76.11 74.72 71.92 71.88 74.20 76.15 74.72 70.02 70.12 74.68 75.77 76.48 76.68
ReviewKD [29] 76.12 75.09 71.89 - 73.89 75.63 74.84 70.37 69.89 - 77.45 77.78 77.14

Lcorr 75.85
±0.12

74.90
±0.29

71.45
±0.21

71.77
±0.34

74.02
±0.27

75.63
±0.09

74.70
±0.27

69.97
±0.33

71.41
±0.41

75.71
±0.02

76.80
±0.28

77.27
±0.25

77.35
±0.25

Lcorr + Lgram 76.12
±0.04

75.18
±0.22

71.47
±0.07

71.99
±0.46

74.26
±0.05

76.19
±0.22

74.93
±0.12

70.39
±0.39

71.34
±0.33

75.49
±0.32

76.91
±0.19

77.40
±0.06

77.09
±0.08

Table 5.1: CIFAR-100 test accuracy (%) of student networks trained with a number of distillation
methods. The best results are highlighted in bold, while the second best results are underlined. The
mean and standard deviation was estimated over 3 runs. Same-architecture transfer experiments are
highlighted in blue, whereas cross-architectural transfer is shown in red.

of student-teacher architecture pairs, where all of the reported methods use the same teacher

weights. For a fair comparison, we only compare our results to methods that use the standard

CRD [174] teacher weights.

The model abbreviations in the results table are given as follows: Wide residual networks

(WRNd-w) [208], MobileNetV2 [53] (MN2), ShuffleNetV1 [211] / ShuffleNetV2 [170] (SN1 /

SN2), and VGG13 / VGG8 [165] (V13 / V8). R32x4, R8x4, R110, R56 and R20 denote

CIFAR-style residual networks, while R50 denotes an ImageNet-style ResNet50 [68].

CRCD [218] is not shown in this table since it uses different teacher weights, which are not

released. Additionally, using the unofficial code that is released by the authors, we were unable

to replicate their reported results. Although both SSKD and HSAKD do provide official im-

plementations and corresponding teacher weights, their use of self-supervision and additional

auxiliary tasks is much more computationally expensive and orthogonal to our work. However,

we do include these methods in the experiment on ImageNet since the same teacher weights

are used.

For all experiments in table 5.1, we set βcorr = 2.0 and βgram = 1.0 (or βgram = 0.0 when only

using Lcorr). For the correlation loss α, we use a value of 1.01 for the same architectures and

75

v.s. ReviewKD WCoRD Lcorr

Lcorr -3.7% +16.2% -
Lcorr + Lgram +6.8% +24.4% +10.5%

Table 5.2: Relative performance improvement (averaged over all architecture pairs in table 5.1) of
the correlation and mutual information based losses against ReviewKD, WCoRD and Lcorr only.

1.50 for the cross-architectures. ITRD achieves the best performance for 10 out of 13 of the

architecture pairs, with a 6.8% and 24.4% relative improvement4 over ReviewKD and WCoRD

respectively. The addition of Lgram is also shown to complement the Lcorr loss through a 10.5%

average relative improvement over all pairs, as shown in table 5.10.

Experiments on ImageNet classification [155] involve 1.3 million images from 1000 dif-

ferent classes. In this experiment, we set the input size to 224 × 224, and follow a standard

augmentation pipeline of cropping, random aspect ratio and horizontal flipping. We use the

torchdistill library with standard settings, i.e., 100 epochs of training using SGD with an ini-

tial learning rate of 0.1 that is divided by 10 at epochs 30, 60 and 90. The results are shown

against the total training efficiency in figure 5.2. The training efficiency is measured in img/s,

which is inversely proportional to the total training time. For evaluating this metric, we used

the official torchdistill implementations where possible. In the case of HSAKD, we used their

official implementation and for CRCD we used the unofficial implementation provided by the

authors. For a fair comparison, the batch sizes were scaled to ensure the training would fit

within a pre-determined memory constraint of 8GB, and we used for training an RTX 2080Ti

GPU.

4For clarity, we use the same definition for relative improvement as provided in WCoRD [28]. This is given
by X−Y

X−KD , where the X method is compared to Y relative to standard KD with KL divergence.

76

Figure 5.2: Top-1 Accuracy on ImageNet v.s. training efficiency with a ResNet-18 as the student
and a pre-trained ResNet-34 as the teacher. For CRCD, the training efficiency was evaluated using
the authors unofficial implementation, while this accuracy is reported in their paper.

In terms of accuracy, ITRD achieves an error of 28.32%, being only behind CRCD and HSAKD,

which are much more computationally intensive through the use of either negative contrastive

sampling and a gradient-based loss, or additional augmented training data. Conversely, our

method is computationally efficient. We only introduce a small complexity overhead that

comes from a single linear layer that embeds the student and teacher representations in the

same space, and also from computing the gram and cross-correlation matrices. The results

show the applicability of our method to large-scale datasets, while also being significantly more

efficient and simple to adopt.

Ablation study is performed for the impact of the weightings in the loss, namely βcorr and

βgram. The experiments were performed on CIFAR100 with a ResNet50 for the teacher and a

MobileNetV2 for the student. The results are given in figure 5.4 and show that the student’s

performance is relatively robust to a wide range of values. For the βmi weighting, the average

loss maintains within 0.5% and a similar level of variation is achieved for βcorr ∈ [1.5, 2.5].

We further provide some insight into the choice of α for the correlation loss. Specifically, we

evaluate the students performance when trained using a range of values for α, of which the

77

Figure 5.3: Accuracy (%) when varying both the correlation loss (left) and mutual information loss
(right) weightings.

α 1.01 1.5 2.0 3.0 4.0 5.0 10.0

Mean 71.15 71.34 71.42 71.32 71.22 70.41 62.91
Std 0.21 0.33 0.39 0.16 0.06 0.43 1.21

Table 5.3: Accuracy (%) when varying α in the correlation loss for CIFAR-100 ResNet50→ Mo-
bileNetV2 distillation.

results can be seen in table 5.9. The same dataset and student-teacher architecture are used

from the previous ablation experiments. The best results are achieved with α = 2.0, which

demonstrates the benefit of incorporating Rényi’s generalisation for entropy into the proposed

losses.

Transferability of representations The main task of representation distillation is to train

a smaller model to learn general and discriminative representations of the data. To confirm

this result, we explore the task of transferring these models to two different datasets, namely

Tiny ImageNet [194], and STL-10 [39]. Tiny ImageNet is a subset of ImageNet that contains

200 classes, with 500 training and 50 validation images per class each of size 64 × 64. On the

other hand, STL-10 contains 10 classes, with 500 training and 800 testing images per class each

of size 32 × 32. A WRN-16-2 student is first trained using ITRD from a WRN-40-2 teacher

on the CIFAR100 dataset, after which the representation extractor is frozen and a new linear

classifier is fine-tuned on the target data. The results are shown in table 5.4 and show that

ITRD outperforms CRD+KD.

78

Student KD AT FitNet CRD ITRD Teacher

CIFAR100 → STL-10 69.7 70.9 70.7 70.3 71.6 72.7 68.6
CIFAR100 → TinyImageNet 33.7 33.9 34.2 33.5 35.6 36.0 31.5

Table 5.4: Transferability of the representations from CIFAR-100 to STL-10 and TinyImageNet.
Only the linear classifier heads of each model are fine-tuned on the target datasets. The top-1 classi-
fication accuracies are reported (%).

Binary distillation Quantisation is often described as an orthogonal approach for network

compression against other methods such knowledge distillation, pruning, and low-rank decom-

position. Binary neural networks (BNNs) [46, 142, 102, 193] are an extreme case of quantisation,

where the weights can only represent two values. BNNs can obtain a steep increase of inference

speed on CPUs [147] and FPGAs [183], while achieving significant model size reduction at the

cost of only a small drop in accuracy compared to their full-precision counterparts.

In this section, we show that combining ITRD with binary quantisation can begin to bridge the

gap between the binary and full-precision networks. For our experiments we use the state-of-the-

art method ReCU [193] as our base model, and we distill the information from a full precision

teacher to our binary student. In this experiment, both the full precision teacher and the binary

student share the same architecture, the only difference being the quantisation modules in the

student. Table 5.5 shows the full set of results, and for all distillation methods we employed the

same hyperparameters used in the previous experiments. Both CRD and ReviewKD were shown

to degrade the students performance. In contrast, ITRD improves upon the baseline accuracy

by 1.3%, which is only 0.7% shy of the full-precision model. Since both the student and teacher

networks adopt different non-linearities, the two networks interpolate and extrapolate between

data very differently [192], subsequently making effective distillation very difficult. Although

we expect a thorough search of hyperparameters for CRD and ReviewKD could improve their

performance, the results demonstrate the robustness of ITRD to the training parameters as

they were not modified for this experiment.

NLP Question Answering. To show the wide applicability of our method, Table 5.5 shows

the results of ITRD in a distillation task on the SQuAD 1.1 [145] reading comprehension task,

using the transformer-based [184] BERT [45] as a teacher and modified versions of BERT with

79

Network Method Top-1 (%)

ResNet-18 Full Precision 94.8
RAD [46] 90.5

IR-Net [142] 91.5
RBNN [102] 92.2
ReCU [193] 92.8

ReCU + CRD 92.1
ReCU + ReviewKD 92.6

ReCU + KD 93.3
ReCU +Lcorr 93.9

ReCU +Lcorr + Lgram 94.1

Full Precision 94.1
XNOR-Net [147] 89.8

BNN [42] 89.9
DoReFa [216] 90.2

VGG-small IR-Net [142] 90.4
RBNN [102] 91.3
DSQ [56] 91.7
SLB [196] 92.0
ReCU [193] 92.2
ReCU+KD 92.5

ReCU + CRD 91.3
ReCU +Lcorr 93.4

ReCU +Lcorr + Lgram 93.3

Table 5.5: Performance comparison with the state-of-the-art on CIFAR-10 for binary networks. All
models, except full precision, use a bit length of 2 for the weights and activations.

80

Model EM F1

Teacher (BERT) 81.5 88.6

T
6

DistilBERT 79.1 86.9
TextBrewer 80.8 88.1

ITRD 81.5 88.5

T
3 TextBrewer 76.3 84.8

ITRD 77.7 85.8

Table 5.6: Question Answering on SQuAD 1.1. The teacher architecture, BERT, contains 12 layers,
whereas the students, T6 and T3, follow the same architecture as BERT but with 6 and 3 layers
respectively.

fewer layers as the students. For this experiment, we use the same hyperparameters used in

the previous experiments, and following TextBrewer we apply ITRD to the output of each of

the student transformer layers, and also use a standard KD [73] loss between the teacher and

students logits. Table 5.6 shows that we outperform both NLP-specific distillation methods

TextBrewer [197] and DistilBert [159] in both the Exact Match (EM) metrics and in F1 score.

5.6 Discussion

Reproducibility To aid the reproducibility of this work, we implemented ITRD in both

the CRD evaluation framework [174] and the torchdistill [117] KD reproducibility framework,

which will both be released. Furthermore, the pseudo-code in algorithm 2.1 encapsulates both

losses, showing the simplicity of using the proposed losses in current KD settings. We hope that

the release of the code, along with the computational simplicity of our approach will encourage

further development of this work.

Limitations and future work. A large amount of the spatial information is lost by the

final representation, which is the space in which the distillation losses are defined. This loss of

spatial information may be regarded as a limitation for more structured tasks (e.g., semantic

segmentation or object detection), however, we expect that research in this direction would be

a natural extension of this work. Another promising direction for this work is in the context

of deep mutual learning. Jointly training both the teacher and student models can provide

effective collaboration at the cost of increased training time.

81

5.7 Conclusion

In this work, we proposed an information-theoretic setting for representation distillation. Using

this framework, we introduce novel distillation losses that are very simple and computationally

inexpensive to adopt into most deep learning pipelines. Each of the proposed losses aim to

extract complementary information from the teacher network. The correlation loss aims to

guide the student to match the teacher representation on a feature-level. Conversely, the

mutual information loss aims to transfer the intra-batch similarity between samples from the

teacher to the student. We have shown the superiority of our approach compared to methods

of similar computational costs on standard classification benchmarks. Furthermore, we have

shown the applicability of our method to binary networks, whereby we begin to bridge the

performance gap between full-precision and binary networks.

5.8 Supplementary

In this section we provide some supplementary experiments demonstrating the robustness of

our loss to varying values of α, βcorr, and βgram. Additionally, we explore the impact of the

choice of kernel function for the mutual information loss and a comparison of the of the training

costs and convergence against other state-of-the-art distillation methods.

5.8.1 Mutual Information Loss

Information potential The log transformation must be used in both the marginal and joint

entropy terms to be a valid measure of mutual information. Without it, the loss resembles a

distance between these quantities, rather than a ratio. However, empirically, we observed a

small degradation in accuracy when using the log in both these terms, which can be seen in

table 5.7.

82

Lmi Gs −Gst log2(Gs)− log2(Gst)

Mean 71.52 71.36
Std 0.25 0.35

Table 5.7: Accuracy (%) with and without the log2 data transformation. The experiments were
performed for CIFAR-100 ResNet50→ MobileNetV2 distillation.

Exploring different kernels κ The kernel used for the Lgram loss was a polynomial kernel of

degree 2, however, we also considered the use of a radial basis function (RBF) kernel κ(xi, xj) =

exp
(
−∥xi−xj∥2

2σ2

)
. To select the values of σ, we then used Silverman’s rule of thumb [164] σ =

h×n−1/(4+d), where n is the size of the mini-batch, d is the dimensionality of the representations,

while h is an empirical value. The results can be seen in table 5.8 for both h = 1.0, h = 5.0,

and the polynomial kernel. Although the RBF kernel did show promising results, the value of h

is very dependant on both the dataset and the architectures used. To promote reproducibility

of our results, we thus chose to use the polynomial kernel throughout.

κ Polynomial RBF (σ ≈ 1.0) RBF (σ ≈ 5.0)

Mean 71.52 71.14 70.99
Std 0.25 0.18 0.08

Table 5.8: Accuracy (%) with the RBF kernel for the Lgram with different kernel sizes σ. The
experiments were performed for CIFAR-100 ResNet50→ MobileNetV2 distillation.

5.8.2 Correlation Loss

Relationship to joint entropy. The objective from equation 6 closely resembles maximising

log2
∑

i vi. However, although these two objectives share the same optimum solution, the

flexibility in tuning the sharpness of the loss with α proved very effective. If we consider the

self correlation matrices Css and Ctt, the diagonal entries in (Css ◦Ctt)
2 5 will be populated

with products of pairs of cross-correlation terms between Zs and Zt. This matrix construction

can then be used in equation 4 to compute the joint α-order entropy between the student

and the teacher, where α = 2. In the case where the features are strictly independent, i.e.,

5This exponent denotes the square of a matrix, rather than an element-wise operation.

83

(Css)ij = (Ctt)ij = 0 ∀ i ̸= j, the objective of the proposed loss in equation 6 and maximising

this joint entropy are equivalent. In the more general setting, the joint entropy formulation

maximises the correlation between all pairs of exemplars, while our proposed loss only maximises

the correlation along the leading diagonal of Cst.

Correlation v.s. Gram matrices. The connection to joint entropy is limited in that the

matrices used are correlation matrices as opposed to Gram matrices in equation 4. This is an

important distinction since in this loss we wish to capture the similarity across the feature-

dimension as opposed to the batch-dimension. However, despite this distinction, there is still

an intimate connection between these two matrices. As discussed in the recent work on cross-

covariance attention [50], the non-zero part of the eigenspectrum of the Gram and covariance

matrices are equivalent. Since the entropy-like formulation described in equation 3 is a spectral

function of A, the two resulting quantities are in turn closely related.

Ablation study is performed for the impact of the weightings in the loss, namely βcorr and

βgram. The experiments were performed on CIFAR100 with a ResNet50 for the teacher and a

MobileNetV2 for the student. The results are given in figure 5.4 and show that the student’s

performance is relatively robust to a wide range of values. For the βgram weighting, the average

loss maintains within 0.5% and a similar level of variation is achieved for βcorr ∈ [1.5, 2.5].

We further provide some insight into the choice of α for the correlation loss. Specifically, we

evaluate the students performance when trained using a range of values for α, of which the

results can be seen in table 5.9. The same dataset and student-teacher architecture are used

from the previous ablation experiments. The best results are achieved with α = 2.0, which

demonstrates the benefit of incorporating Rényi’s generalisation for entropy into the proposed

losses.

84

Figure 5.4: Accuracy (%) when varying both the correlation loss (left) and mutual information loss
(right) weightings.

α 1.01 1.5 2.0 3.0 4.0 5.0 10.0

Mean 71.15 71.34 71.42 71.32 71.22 70.41 62.91
Std 0.21 0.33 0.39 0.16 0.06 0.43 1.21

Table 5.9: Accuracy (%) when varying α in the correlation loss for CIFAR-100 ResNet50→ Mo-
bileNetV2 distillation.

Reproducibility To aid the reproducibility of this work, we implemented ITRD in both

the CRD evaluation framework [174] and the torchdistill [117] KD reproducibility framework,

which will both be released. Furthermore, the pseudo-code in algorithm 5.1 encapsulates both

losses, showing the simplicity of using the proposed losses in current KD settings. We hope that

the release of the code, along with the computational simplicity of our approach will encourage

further development of this work.

Model Architectures In experiments, we utilize the following model architectures.

• Wide Residual Network (WRN) [208]: WRN-d-w represents wide ResNet with depth d

and width factor w.

• resnet [68]: We use ResNet-d to represent CIFAR-style resnet with 3 groups of basic

blocks, each with 16, 32, and 64 channels, respectively. In our experiments, resnet8x4

and resnet32x4 indicate a 4 times wider net- work (namely, with 64, 128, and 256 channels

for each of the blocks).

85

• ResNet [68]: ResNet-d represents ImageNet-style ResNet with bottleneck blocks and more

channels.

• MobileNetV2 [53]: In our experiments, we use a width multiplier of 0.5.

• VGG [165]: The VGG networks used in our experiments are adapted from their original

ImageNet counterpart.

• ShuffleNetV1 [211], ShuffleNetV2 [115]: ShuffleNets are proposed for efficient training and

we adapt them to input of size 32x32.

Implementation Details The CIFAR100 experimental evaluation and architectures used

for comparisons are provided by Tian et al.in their work on contrastive representation distilla-

tion [174]. For the ImageNet experiments, we use the torchdistill [117] reproducibility frame-

work, and for the binary distillation experiments we use the code provided by ReCU [193]. For

completeness, we include the detail of the CRD provided architectures and training schedules

here:

All methods evaluated in our experiments use SGD. For CIFAR-100, we initialize the learning

rate as 0.05, and decay it by 0.1 every 30 epochs after the first 150 epochs until the last 240

epoch. For MobileNetV2, ShuffleNetV1 and ShuffleNetV2, we use a learning rate of 0.01 as

this learning rate is optimal for these models in a grid search, while 0.05 is optimal for other

models.

Training costs Figure 5.2 provides the ImageNet training costs with the same hardware and

a fixed memory constraint, where ITRD is relatively on par with the cheap standard KD. Table

5.10 shows additional results on the memory overhead for a fixed batch-size. In addition to

these metrics, for the R34 → R18 ImageNet comparison, ITRD adds only 0.26M trainable

parameters by using a linear embedding layer, whereas e.g., ReviewKD introduces 1.8M and

CRD/WCoRD use a memory bank that stores tens of millions of parameters.

86

v.s. ReviewKD CRCD HSAKD

Memory 4.08× over GPU (24GB) limit 5.61×
Train time 2.22× 4.00× 31.06×

Table 5.10: Relative overhead in terms of memory and training time against main competing dis-
tillation methods on ImageNet. Training time used a variable batch size to fit a pre-defined memory
limit, while the memory experiments were using a fixed batch size.

Figure 5.5: Training epochs vs validation accuracy for VGG13→VGG8 CIFAR 100 distillation.
Zoomed-in regions show that our method converges faster to a higher accuracy.

Training convergence. Our method achieves a fast convergence, thus training with fewer

epochs may lead to similar results to using the full training schedule. As shown in figure 5.5,

ITRD achieves a higher final accuracy and also converges much faster after each learning rate

drop than two of the main competitors (i.e., CRD and KD).

Hyper-parameters fine-tuning The proposed ITRD framework does not use any KL diver-

gence for the logits. This would need additional tuning of α and τ , where τ is often very dataset

dependent. Lots of other methods report their results in conjunction with the KL loss [174,

28]. In addition, these methods also contain extra hyperparameters that need to be carefully

tuned. For example, WCoRD[28] shows a robustness over a very small range 0 < λ2 < 0.2,

while we provide a much larger range of values tested for our hyperparameters (βcorr, βgram,

α) whilst providing a comparable, or strictly lower, variation of performance. Similarly, CRD

performance is also highly dependent on the number of negative samples used or the temper-

87

ature chosen. Furthermore, we also use the same hyper-parameters used in the paper for the

NLP experiments, thus demonstrating the robustness to the choice of hyperparameters.

88

Chapter 6

Understanding the Role of the

Projector in Knowledge Distillation

In this chapter, we revisit the efficacy of knowledge distillation as a function matching and

metric learning problem. In doing so we verify three important design decisions, namely the

normalisation, soft maximum function, and projection layers as key ingredients. We theo-

retically show that the projector implicitly encodes information on past examples, enabling

relational gradients for the student. We then show that the normalisation of representations is

tightly coupled with the training dynamics of this projector, which can have a large impact on

the students performance. Finally, we show that a simple soft maximum function can be used

to address any significant capacity gap problems. Experimental results on various benchmark

datasets demonstrate that using these insights can lead to superior or comparable performance

to state-of-the-art knowledge distillation techniques, despite being much more computationally

efficient. In particular, we obtain these results across image classification (CIFAR100 and Im-

ageNet), object detection (COCO2017), and on more difficult distillation objectives, such as

training data efficient transformers, whereby we attain a 77.2% top-1 accuracy with DeiT-Ti

on ImageNet. All code and model checkpoints for this chapter are available on GitHub 1.

1https://github.com/roymiles/Simple-Recipe-Distillation

89

6.1 Introduction

Although knowledge distillation has shown to be very effective, there are still some limitations

related to the computational and memory overheads in constructing and evaluating the losses,

as well as an insufficient theoretical explanation for the underlying core principles. To over-

come these limitations, we revisit knowledge distillation from both a function matching and

metric learning perspective. We perform an extensive ablation of three important components

of knowledge distillation, namely the distance metric, normalisation, and projector network.

Alongside this ablation we provide a theoretical perspective and unification of these design

principles through exploring the underlying training dynamics. Finally, we extend these princi-

ples to a few large scale vision tasks, whereby we achieve comparable or improved performance

over state-of-the-art. The most significant result of which pertains to the data-efficient train-

ing of transformers, whereby a performance gain of 2.2% is achieved over the best-performing

distillation methods that are designed explicitly for this task. Our main contributions can be

summarised as follows.

• We explore three distinct design principles from knowledge distillation, namely the projec-

tion, normalisation, and distance function. In doing so we demonstrate their unification

and coupling with each other, both through analytical means and by observing the train-

ing dynamics.

• We show that a projection layer implicitly encodes relational information from previous

samples. Using this knowledge we can remove the need to explicitly construct correlation

matrices or memory banks that will inevitably incur a significant memory overhead.

• We propose a simple recipe for knowledge distillation using a linear projection, batch

normalisation, and a LogSum function. These three design choices can attain competitive

or improved performance to state-of-the-art for image classification, object detection, and

the data efficient training of transformers.

90

6.2 Related Work

Knowledge Distillation Knowledge distillation is the process of transferring the knowledge

from a large, complex model to a smaller, simpler model. Its usage was originally proposed

in the context of image classification [72] whereby the soft teacher predictions would encode

relational information between classes. Spherical KD [59] extended this idea by re-scaling the

logits, prime aware adaptive distillation [212] introduced an adaptive weighting strategy, while

DKD [213] proposed to decouple the original formulation into target class and non-target class

probabilities.

Hinted losses [151] were a natural extension of the logit-based approach whereby the interme-

diate feature maps are used as hints for the student. Attention transfer [207] then proposed

to re-weight this loss using spatial attention maps. ReviewKD [29] addressed the problem re-

lating to the arbitrary selection of layers by aggregating information across all the layers using

trainable attention blocks. Neuron selectivity transfer [81], similarity-preserving KD [182], and

relational KD [137] construct relational batch and feature matrices that can be used as inputs

for the distillation losses. Similarly FSP matrices [198] were proposed to extract the relational

information through a residual block. In contrast to this theme, we show that a simple pro-

jection layer can implicitly capture most relational information, thus removing the need to

construct any expensive relational structures.

Representation distillation was originally proposed alongside a contrastive based loss [174]

and has since been extended using a Wasserstein distance [28], information theory (discussed

in chapter 5), graph theory [116], and complementary gradient information [218]. Distilla-

tion also been empirically shown to benefit from longer training schedules and more data-

augmentation [18], which is similarly observed with HSAKD [195] and SSKD [191]. Distil-

lation between CNNs and transformers has also been a very practically motivated task for

data-efficient training [179] and has shown to benefit from an ensemble of teacher architec-

tures [149]. However, we show that just a simple extension of some fundamental distillation

design principles is much more effective.

91

Self-Supervised Learning Self-supervised learning (SSL) is an increasingly popular field

of machine learning whereby a model is trained to learn a useful representation of unlabelled

data. Its popularity has been driven by the increasing cost of manual labelling and has since

been crucial for training large transformer models. Various pretext tasks have been proposed

to learn these representations, such as image inpainting [66], colorization [210], or prediction

of the rotation [55] or position of patches [48, 24]. SimCLR [31] approached self-supervision

using a contrastive loss with multi-view augmentation to define the positive and negative pairs.

They found a large memory bank of negative representations was necessary to achieve good

performance, but would incur a significant memory overhead. MoCo [67] extending this work

with a momentum encoder, which was subsequently extended by MoCov2 [35] and MoCov3 [34].

Asymmetric architectures were proposed as an alternative to contrastive learning, whereby no

negative samples are needed. Most noticeable works in this area are BYOL [58] and Sim-

Siam [33] which both use stop gradients to avoid representation collapse. DirectPred [175]

provided a theoretical understanding of this non-contrastive SSL setting. They introduced a

series of conceptual insights into the functional roles of many crucial ingredients used. In doing

so they derived a simple linear predictor with competitive performance to some much more

complex predictor architectures. In our work we explore knowledge distillation from a similar

perspective as DirectPred but observe some unique observations and results pertaining to this

distillation setting.

batch norm batch norm

LogSum distance

student

linear projection

preserve alignment with backbone
encode relational information

minimise projector collapse

teacher

(a)

(b)

bridge large capacity gaps

(c)

Figure 6.1: Proposed feature distillation pipeline using three distinct components: linear projection
(a), batch norm (b), and a LogSum distance (c). We provide an interpretable explanation for each
each of these three components, which results in a very cheap and effective recipe for distillation.

92

(a) no normalisation. (b) L2 normalisation. (c) batch normalisation.

Figure 6.2: Evolution of singular values of the projection weights Wp under three different repre-
sentation normalisation schemes. The student is a Resnet-18, while the teacher is a ResNet-50. The
three curves shows the evolution of singular values for the projector weights when the representations
undergo no normalisation, L2 normalisation, and batch norm respectively.

Feature decorrelation is another approach to SSL that avoids the need for negative pairs to

address representation collapse. Both Barlow twins [209] and VICReg [14] achieve this by

maximising the variance within a batch, while preserving invariance to augmentations. Both

contrastive learning and feature decorrelation have since been extended to dense prediction

tasks [15] and unified with knowledge distillation [124].

6.3 Understanding the Role of the Projector

Knowledge distillation (KD) is a technique used to transfer knowledge from a large, powerful

model (teacher) to a smaller, less powerful one (student). In the classification setting, it can

be done using the soft teacher predictions as pseudo-labels for the student. Unfortunately, this

approach does not trivially generalise to non-classification tasks [106] and the classifier may

collapse a lot of information [178] that can be useful for distillation. Another approach is to

use feature maps from the earlier layers for distillation [151, 207], however, its usage presents

two primary challenges: the difficulty in ensuring consistency across different architectures [29]

and the potential degradation in the student’s downstream performance for cases where the

inductive biases of the two networks differ [174] A compromise, which strikes a balance between

the two approaches discussed above, is to distill the representation directly before the output

space. Representation distillation has been successfully adopted in past works [174, 218, 123]

93

and is the focus of this paper. The exact training framework used is described in figure 6.1

alongside an extension to incorporates a logit distillation loss. The projection layer shown was

originally used to simply match the student and teacher dimensions [151], however, we will show

that its role is much more important and it can lead to significant performance improvements

even when the two feature dimensions already match. The two representations are typically

both followed by some normalisation scheme as a way of appropriately scaling the gradients.

However, we find this normalisation has a more interesting property in its relation to what

information is encoded in the learned projector weights.

In this work we provide a theoretical perspective to motivate some simple and effective design

choices for knowledge distillation. In contrast to the recent works [182, 123], we show that

an explicit construction of complex relational structures, such as feature kernels [65] is not

necessary. In fact, most of this structure can be learned implicitly through the tightly coupled

interaction of a learnable projection layer and an appropriate normalisation scheme. In the

following sections we investigate the training dynamics of the projection layer with the choice

of normalisation scheme. We explore the impact and trade-offs that arise from the architecture

design of the projector. Finally, we propose a simple modification to the distance metric to

address issues arising from a large capacity gap between the student and teacher models. Al-

though we do not aim to necessarily propose a new method for distillation, we uncover a cheap

and simple recipe that can transfer to various distillation settings and tasks. Furthermore,

we provide a new theoretical perspective on the underlying principles of distillation that can

translate to large scale vision tasks.

The projection weights encode relational information from previous samples. The

projection layer plays a crucial role in KD as it provides an implicit encoding of previous samples

and its weights can capture the relational information needed to transfer information regarding

the correlation between features. We observe that even a single linear projector layer can

provide significant improvements in accuracy (see Supplementary). This improvement suggests

that the projections role in distillation can be described more concisely as being an encoder

of essential information needed for the distillation loss itself. Most recent works propose a

94

0 20K 40K 60K 80K 100K
Iteration

0.30

0.35

0.40

0.45

0.50

In
p
u
t-

ou
tp

u
t

co
rr

el
at

io
n

Linear
MLP dim = 64
MLP dim = 512
MLP dim = 2048

Figure 6.3: Correlation between input-output features using different projector architectures. All
projector architectures considered will gradually decorrelate the input-output features. Although this
decorrelation is attributed to the layer removing irrelevant information, it can degrade the efficacy of
distilling through to the student backbone.

manual construction of some relational information to be used as part of a loss [137, 182],

however, we posit that an implicit and learnable approach is much more effective. To explore

this phenomenon in more detail, we consider the update equations for the projector weights

and its training dynamics. Without loss in generality, consider a simple L2 loss and a linear

projection layer without any bias term.

D(Zs,Zt ;Wp) =
1

2
∥ZsWp − Zt∥22 (6.1)

Where Zs and Zt are the student and teacher representations respectively, while Wp is the

matrix representing the linear projection. Using the trace property of the Frobenius norm, we

can then express this loss as follows:

D(Zs,Zt ;Wp) =
1

2
tr
(
(ZsWp − Zt)

T (ZsWp − Zt)
)

(6.2)

=
1

2
tr(WT

p Z
T
s ZsWp − ZT

t ZsWp (6.3)

−WT
p Z

T
s Zt + ZT

t Zt) (6.4)

95

Taking the derivative with respect to Wp, we can derive the update rule Ẇp

Ẇp = −∂D(Wp)

∂Wp

(6.5)

= −ZT
s ZsWp + ZT

s Zt (6.6)

which can be further simplified

Ẇp = Cst −CsWp (6.7)

where Cs = ZT
s Zs ∈ IRds×ds and Cst = ZT

s Zt ∈ IRds×dt denote self and cross correlation

matrices that capture the relationship between features. Due to the capacity gap between the

student network and the teacher network, there is no perfect linear projection between these

two representation spaces. Instead, the projector will converge on an approximate projection

that we later show is governed by the normalisation being employed.

Whitened features: consider using self-supervised learning in conjunction with distillation whereby

the student features are whitened to have perfect decorrelation [51], or alternatively, they are

batch normalised and sufficiently regularised with a feature decorrelation term [14]. In this

setting, the fixed point solution for the projection weights will be symmetric and will capture

the cross relationship between student and teacher features.

Cst −CsWp = 0 where Cs = I (6.8)

→ Wp = Cst (6.9)

Other normalisation schemes, such as those that jointly normalise the projected features and

the teacher features, will have a much more involved analysis but will unlikely provide any

additional insights on the dynamics of training itself. Thus, we propose to empirically explore

the training trajectories of the projector weights singular values. This exploration will help

quantify how the projector is mapping the student features to the teachers space. We cover

this in the next section along with some additional insights into what is being learned and

distilled.

96

The choice of normalisation directly affects the training dynamics of Wp. Equation

6.7 shows that the projector weights can encode relational information between the student and

teacher’s features. This suggests redundancy in explicitly constructing and updating a large

memory bank of previous representations [174]. By considering a weight decay η and a learning

rate αp, the update equation can be given as follows:

Wp → Wp + αpẆp − ηWp (6.10)

= (1− η)Wp + αpẆp (6.11)

By setting η = αp we can see that the projection layer will reduce to a moving average of

relational features, which is very similar to the momentum encoder used by CRD [174]. Other

works suggest to extract relational information on-the-fly by constructing correlation or Gram

matrices [123, 140]. We show that this is also not necessary and more complex information can

be captured through a simple linear projector. We also demonstrate that, in general, the use

of a projector will scale much more favourably for larger batch sizes and feature dimensions.

We also note that the handcrafted design of kernel functions [85, 65] may not generalise to real

large scale datasets without significant hyperparameter tuning.

From the results in table 6.1, we observe that when fixing all other settings, the choice of

normalisation can significantly affect the student’s performance. To explore this in more detail,

we consider the training trajectories of Wp under different normalisation schemes. We find

that the choice of normalisation not only controls the training dynamics, but also the fixed

point solution (see equation 6.7). We argue that the efficacy of distillation is dependent on how

much relational information can be encoded in the learned weights and how much information

is lost through the projection. To jointly evaluate these two properties we show the evolution

of singular values of the projector weights during training. The results can be seen in figure

6.2 and show that the better performing normalisation methods (table 6.1) are shrinking far

97

fewer singular values towards zero. This shrinkage can be described as collapsing the input

along some dimension, which will induce some information loss and it is this information loss

that degenerates the efficacy of the distillation process.

Description RegNet-Y → MBv2 ViT → MBv3 ConvNext → EffNet-b0

No Distillation 50.89 54.13 64.48
L2 Norm 52.91 54.65 64.23
Group Norm 55.63 59.08 65.52
Batch Norm 56.09 59.28 67.95

Table 6.1: Normalisation ablation for distillation across a range of architecture pairs on an ImageNet-
1K 20% subset. Although distillation improves performance with a variety of normalisation schemes,
we find batch normalisation is consistently the most effective.

Larger projector networks learn to decorrelate the input-output features. One nat-

ural extension of the previous observations is to use a larger projector network to encode more

information relevant for the distillation loss. Unfortunately, we observe that a trivial expan-

sion of the projection architecture does not necessarily improve the students performance. To

explain this observation we evaluate a measure of decorrelation between the input and output

features of these projector networks. The results can be seen in figure 6.3 and we can see

that the larger projectors learn to decorrelate more and more features from the input. This

decorrelation can lead to the projector learning features that are not shared with the student

backbone, which will subsequently diminish the effectiveness of distillation. These observations

suggest that there is an inherent trade-off between the projector capacity and the efficacy of

distillation. We note that the handcrafted design of the projector architecture is a motivated

direction for further research [36, 131]. However, in favour of simplicity, we choose to use a

linear projector for all of our large scale evaluations.

Teacher → Student 1.0 1.5 2.0 2.5 3.0 4.0 5.0

ResNet50 → ResNet18 61.74 62.18 62.23 62.84 63.10 63.32 63.40
ConvNext → EffNet-b0 65.52 66.69 66.61 67.10 67.72 68.51 67.69

Table 6.2: Ablating the importance of α. Distillation is generally robust for various values of α, but
consistently optimal in range 4-5 across various architecture pairs.

98

Description ViT → MBv3 ConvNext → EffNet-b0 ResNet-50 → ResNet-18

wo/ LogSum 59.28 67.95 70.03
w/ LogSum 59.80 68.51 71.29

Table 6.3: LogSum ablation across various architecture pairs. Left: 20% subset. Right: Full
ImageNet. The soft maximum function provides consistent improvement across both the CNN→CNN
and ViT→CNN distillation settings.

Teacher WRN40-2 WRN40-2 R56 R32×4 VGG13 R50 R50 R32×4 R32×4 WRN40-2
Student WRN16-2 WRN40-1 R20 R8×4 MBv2 MBv2 VGG8 ShuffleV1 ShuffleV2 ShuffleV1

Teacher 76.46 76.46 73.44 79.63 75.38 79.10 79.10 79.63 79.63 76.46
Student 73.64 72.24 69.63 72.51 65.79 65.79 70.68 70.77 73.12 70.77

KD 74.92 73.54 70.66 73.33 67.37 67.35 73.81 74.07 74.45 74.83
FitNet 75.75 74.12 71.60 74.31 68.58 68.54 73.84 74.82 75.11 75.55
AT 75.28 74.45 71.78 74.26 69.34 69.28 73.45 74.76 75.30 75.61
CRD 76.04 75.52 71.68 75.90 68.49 70.32 74.42 75.46 75.72 75.96
SSKD 76.04 76.13 71.49 76.20 71.53 72.57 75.76 78.44 78.61 77.40

Our Method 76.14 75.42 71.75 76.44 71.47 72.81 76.20 77.32 79.06 79.22

KD† 75.94 75.32 71.10 75.84 70.79 71.29 75.75 77.80 78.43 78.00
CRD† 77.27 76.15 72.21 77.69 71.65 72.03 75.73 78.57 79.01 78.54
DKD† 74.96 75.89 70.95 77.52 72.01 73.30 76.88 79.71 80.08 77.86

Our Method 77.61 76.04 72.25 78.37 72.82 73.51 77.08 78.99 79.86 78.79

Table 6.4: KD between Similar and Different Architectures. Top-1 accuracy (%) on CIFAR100. Bold
is used to denote the best results. All reported models are trained using pairs of augmented images.
Those reported in the top box use RandAugment [43] strategy, while those in the bottom box use
pre-defined rotations, as used in SSKD. † denotes reproduced results in a new augmentation setting
using the authors provided code.

The soft maximum function can address distilling across a large capacity gap. When

the capacity gap between the student and the teacher is large, representation distillation can

become challenging. More specifically, the student network may have insufficient capacity

to perfectly align these two spaces and in attempting to do so may degrade its downstream

performance. To addresses this issue we explore the use of a soft maximum function which

will soften the contribution of relatively close matches in a batch. In this way the loss can

be adjusted to compensate for poorly aligned features which may arise when the capacity gap

is large. The family of functions which share these properties can be more broadly defined

through a property of their gradients. In favour of simplicity, we use the simple LogSum

function throughout our experiments.

99

D(Zs,Zt ;Wp) = log
∑
i

|ZsWp − Zt|αi (6.12)

where α is a smoothing factor. We also note that other functions, such as the LogSumExp,

with a temperature parameter τ , have been used in SimCLR and CRD to a similar effect.

Table 6.1 shows the importance of feature normalisation across a variety of student-teacher

architecture pairs. Batch normalisation provides the most consistent improvement that even

extends to the Transformer → CNN setting. In table 6.3 we highlight the importance of the

LogSum function, which is most effective in the large capacity gap settings, as evident from

the 1% improvement for R50 → R18. Table 6.2 provides an ablation of the importance of the

α parameter, whereby we observe that the performance is relatively robust to a wide range of

values, but consistently optimal in the range 4-5.

6.4 Benchmark Evaluation

Implementation details. We follow the same training schedule as CRD [174] for both the CI-

FAR100 and ImageNet experiments. For the object detection, we use the same training schedule

as ReviewKD [29], while for the data efficient training we use the same as Co-Advice [149]. All

experiments were performed on a single NVIDIA RTX A5000. When using batch normalisation

for the representations, we removed the affine parameters and set ϵ = 0.0001.

6.4.1 Classification on CIFAR100 and ImageNet

Experiments on the CIFAR-100 classification task [91] consist of 60K 32×32 RGB images across

100 classes with a 5:1 training/testing split. Table 6.4 shows the results for several student-

teacher pairings. To enable a fair evaluation, we have only included the methods that use the

same teacher weights provided by SSKD[191]. In these experiments we use an MLP projector

with a hidden size of 1024 and no additional KL divergence loss. We confirm that not only

100

is the choice of augmentation critical for good performance [18] on this dataset, but applying

our principles can attain state-of-the-art across most architecture pairs. The most significant

improvements pertain to the cross-architecture experiments or where the capacity gap is large.

We provide two sets of experiments with and without introducing a wider set of augmentations.

In both settings we maintain the same optimiser, learning rate scheduler, and training duration.

The ImageNet [155] classification uses 1.3 million images that are classified into 1000 distinct

classes. The input size are set to 224 x 224, and we employed a typical augmentation proce-

dure that includes cropping and horizontal flipping. We used the torchdistill library with the

standard configuration, which involves 100 training epochs using SGD and an initial learning

rate of 0.1, which is decreased by a factor of 10 at epochs 30, 60, and 90. The results can be

seen in table 6.6 and although the choice of architectures is not in favour of our method since

the capacity gap is small, we are still able to attain competitive performance. Other methods,

such as ICKD [105] or SimKD [25] either modify the original training settings or modify the

underlying student architecture, and so have been omitted from this evaluation.

6.4.2 Data efficient training for transformers

Transformers have emerged as a viable replacement for convolution-based neural networks

(CNN) in visual learning tasks. Despite the promise of these models, their performance will suf-

fer when there is insufficient training data available, such as in the case of ImageNet. DeiT [179]

was the first to address this problem through the use of knowledge distillation. Although the

authors show improved alignment with the teacher, we believe this fails to capture why less

data is needed.

We posit that the distillation process encourages the student to learn layers which are ”more”

translational equivariant in attempt to match the teacher’s underlying function. Although this

is the principle that motivates using an ensemble of teacher models with different inductive

biases [149], there is still no thorough demonstration on if the inductive biases are actually

being transferred. In this section we attempt to address this gap by introducing a measure

of equivariance. We show that applying our distillation principles to this task can achieve

101

significant improvements over state-of-the-art as a result of transferring more of the translational

equivariance.

The results of these experiments are shown in table 6.5. We use the exact same training method-

ology as co-advice [149] and choose to use batch normalisation, a linear projection layer, and

α = 4 as the parameters for distillation. We observe a significant improvement over both DeiT

and CivT when the capacity gap is large. However, as the capacity gap diminishes, and the

student approaches the same performance as the teacher, this improvement is much less signifi-

cant. Multiple factors, such as the soft maximum function and the batch normalisation, will be

contributing to this observed result. However, the explanation is more concisely described by

the fact that our distillation loss transfers more translational equivariance, which is discussed

in the next section.

Cross architecture distillation can implicitly transfer inductive biases. CNNs use

convolutions, which are spatially local operations, whereas transformers use self-attention,

which are global operations. We expect that a benefit of this cross-architecture distillation

setting is that the students learn to be ”more” spatially equivariant in an attempt to match

the teachers underlying function. It is this strong inductive bias that can reduce the amount

of training data needed. A layer is translation equivariant if the following property holds:

ϕ(Tx) = Tϕ(x) (6.13)

In other words, if we take a translated input Tx and pass it through a layer ϕ, the result

should be equivalent to first applying ϕ to x and then performing the translation. A natural

measure of equivariance can then be the difference between the left and right-hand side of this

equation 6.13.

µT (ϕ) = ∥ϕ(Tx)− Tϕ(x)∥22 (6.14)

We evaluate this measure on a block of self-attention layers by first removing the distillation

and class tokens and then rolling the patch tokens to recover the spatial dimensions. This

102

Network acc@1 Teacher #params

RegNetY-160 82.6 none 84M
BiT-M R152x2 84.5 none 236M

DeiT-Ti 72.2 none 5M
CivT-Ti 74.9 ensemble 6M
DeiT-Ti⚗ 74.5 regnety-160 6M

↰

1000 epochs 76.6 regnety-160 6M
DearKD 74.8 regnety-160 6M

↰

1000 epochs 77.0 regnety-160 6M
USKD 75.0 regnety-160 6M
Our Method 77.2 regnety-160 6M

ResNet-50 76.5 none 25M
FunMatch 80.3 bit-m r152x2 25M↰

9600 epochs 82.8 bit-m r152x2 25M

DeiT-S 79.8 none 22M
CivT-S 82.0 ensemble 22M
DeiT-S⚗ 81.2 regnety-160 22M

↰

1000 epochs 82.6 regnety-160 22M
DearKD 81.5 regnety-160 22M

↰

1000 epochs 82.8 regnety-160 22M
USKD 80.8 regnety-160 22M
Our Method 82.1 regnety-160 22M

Table 6.5: Data-efficient training of transformers and CNNs on the ImageNet-1K dataset. Unless
specified, all student models are trained for 300 epochs.

Teacher Student AT KD CC CRD ReviewKD Ours

acc@1 26.69 30.25 29.30 29.34 30.04 28.62 28.39 28.13
acc@5 8.58 10.93 10.00 10.12 10.83 9.51 9.42 9.29

Table 6.6: Top-1 and Top-5 error rates (%) on ImageNet. ResNet18 as student, ResNet34 as teacher.

103

operation can then be performed on the input and output tensors before applying a translation.

Table 6.7 shows this measure of equivariance after training with and without distillation. In

general, we observe that the distilled models do in fact learn to preserve spatial locality between

feature maps, which aligns with the function matching perspective for distillation (see table

6.7). We also find that our distillation method can transfer a lot more of this equivariance

property to the student. Although Co-advise does learn this spatial locality to some extent, it

is much less significant than using our feature based distillation, despite both attaining a similar

level of performance. Intermediate feature map losses may be able to transfer even more of

this translational equivariance property, however, its usage may degrade the benefit of using a

transformer in the first place. For example, although we observe that most self-attention blocks

(trained using distillation) do preserve a lot of this spatial locality, there is still some global

context between patch tokens that is still being preserved.

Network µT (ϕ)

DeiT-S 1.52± 0.15
CivT-S 0.13± 0.05
Our Method 0.04± 0.02

Table 6.7: Measure of translational equivariance of a DeiT-S transformer model trained with and
without distillation. These results confirm that distillation can transfer explicit inductive biases from
the teacher.

6.4.3 Object Detection on COCO

We extend the application of our method to object detection, whereby we employ a similar

approach as used in the classification task by distilling the backbone output features of both the

student and teacher networks. To evaluate the efficacy of our method, we conduct experiments

on the widely-used COCO2017 dataset [103] under the same settings provided in ReviewKD.

We then further demonstrate the applicability of our distillation principles on the more recent

and efficient YOLOv5 model [219]. In both cases we show improved student performance on the

downstream task, whereby competitive performance is achieved with ReviewKD despite being

significantly simpler and cheaper to integrate into a given distillation pipeline. Our method

even outperforms FPGI [185], which is directly designed for detection.

104

Model mAP (50-95) mAP 50

YOLOv5m (teacher) 64.1 45.4
YOLOv5s 56.8 37.4↰

Our Method 57.3 37.5

mAP AP50

Faster R-CNN w/ R50 (teacher) 40.22 61.02
Faster R-CNN w/ MV2 29.47 48.87↰

KD 30.13 50.28↰

FitNet 30.20 49.80↰

FPGI 31.16 50.68↰

ReviewKD 33.71 53.15↰

Our Method 32.92 52.96

Table 6.8: Object detection on COCO. (top) We report the standard COCO metric of mAP averaged
over IOU thresholds in [0.5 : 0.05 : 0.95] along with the standard PASCAL VOC’s metric, which is
the average mAP@0.5. (bottom) For the R-CNN results, we report the mAP and AP50 metrics to
enable a consistent comparison with ReviewKD.

6.5 Conclusion

In this paper, we revisited the core underlying principles of knowledge distillation and have

performed an extensive ablation on the most effective and scaleable components. In doing so,

we have provided a new theoretical perspective for understanding these results through analyz-

ing the projector training dynamics. By extending these principles to a wide range of tasks, we

achieve competitive or improved performance to state-of-the-art across image classification, ob-

ject detection, and data efficient training of transformers. Our proposed distillation recipe can

significantly reduce the complexity and memory consumption of existing pipelines by avoiding

the need to construct expensive relational object, many trainable layers, or enforcing very long

training schedules. We further show improved performance for the large capacity gap settings

and evidence for the distillation of explicit inductive biases from the teacher. Looking ahead to

future research in this area, we expect to see the joint development of more sophisticated nor-

malisation schemes and projection networks, which will encode more complex and informative

features for the distillation process.

Code Reproducibility. To facilitate the reproducibility of results, we will release all the

training code and pre-trained weights. The ImageNet experiments are also performed using

105

the popular torchdistill [117] framework, while the CIFAR100 and data-efficient training code

is based on those provided by CRD [174] and co-advice [149] respectively.

6.6 Supplementary Material

Small capacity gap setting. We ablate the importance of the repulsive force in the low-

capacity gap setting, whereby we observe a much smaller performance improvement (table 6.9).

This observation is likely attributed to the teacher no longer providing any sufficiently more

discriminative representations to aid in the knowledge distillation process.

Description Repulsive force acc@1

KD KL(ps ∥ pt) 71.37

Mean-square
no projection

∥zs − zt∥22 71.08

Mean-square ∥zs − zt∥22 71.53

Batch-normalised ∥BN(zs)−BN(zt)∥22 71.34

Correlation ∥BN(zs) ·BN(zt)−1∥2 71.35

Higher-order ∥BN(zs) ·BN(zt)− 1∥4 71.31

Soft maximum log
∑

∥BN(zs) ·BN(zt)− 1∥4 71.63

Table 6.9: Ablating the importance in the choice of metric function using a ResNet34 and a ResNet18
student on the ImageNet dataset. The loss modifications are highlighted in red.

6.6.1 Measure of translational equivariance

In this section we provide more details on the proposed measure of translational equivariance

and the motivation for its usage. In the cross inductive-bias distillation literature it is common

to evaluate the effectiveness of a distillation pipeline through a measure of agreement between

the student and the teacher [179, 149]. We argue that this metric fails to encapsulate why one

distillation method is more data efficient than another. We hypothesise that the most effective

cross architecture distillation methods are those that transfer most of the inductive biases. To

verify this claim, we introduce a measure of equivariance and show that a good distillation loss

does indeed minimise this. For the convolution → transformer distillation setting, the most

appropriate choice of measure is a measure of translational equivariance. This is because the

106

teacher will have this equivariance explicitly enforced through the underlying convolutional

layers, whereas the self-attention student will not. Recent works have shown that the self-

attention layer can, in principle, learn the same operation as a convolution [96]. The authors

then show that injecting this bias will improve the data-efficiency, however, we show that this

is not necessary since the bias can be learned implicitly through distillation.

Self-attention layers are known to be permutation equivariant. However, with the use of addi-

tive positional encodings, this restriction can be relaxed and can enable these layers to learn

any arbitrary sequence-to-sequence function [206]. When we apply transformers to the vision

domain, the tokens are provided as non-overlapping patches of the image. Thus, to perform a

spatial translation on the sequence of tokens, we must first roll the sequence back to have the

H×W dimensions in the same way in which we unrolled it at the input. The exact details can

be seen in algorithm 2. Using this defined measure, we find that non-distilled transformers are

over 15× less equivariant than their distilled counterparts.

6.6.2 Few-shot distillation experiments

Due to the limited compute resources available, we were unable to perform some ablation

experiments using the full ImageNet training data. To address this concern, and to avoid using

a poor surrogate dataset (i.e. CIFAR100), we propose a more difficult few-shot distillation

setting. In this setting, the models are still trained and evaluated on the large-scale ImageNet

dataset, but with only a subset of the training data available. This results in the distillation

objective being much more challenging. In all of these experiments we sample the same 20%

of images from each class to ensure the overall class balance is maintained.

107

Listing 2: Translational equivariance measure

1 # x: Image representation B x N x C

2 # T: Spatial translation

3 # blk: Block of self -attention layers

4 def compute(x, T):

5 # 14 x 14 patches

6 h = 14

7 w = 14

8 b, n, c = x.shape

9

10 # remove positional encodings

11 xp = x[:, 2:]

12

13 # roll token -dim into H x W dimensions

14 xp = xp.transpose(1, 2).reshape(b, c, h, w)

15 Tx = T(xp)

16

17 # unroll H x W dimensions

18 Tx = Tx.flatten (2).transpose (1,2)

19

20 # add back the positional encodings

21 Tx = torch.cat((x[:, 0:2], Tx), dim =1)

22

23 # forward pass w/ and wo/ translation

24 Fx = blk(x)

25 FTx = blk(Tx)

26

27 # remove position encoding

28 Fxp = Fx[:, 2:]

29 b, n, c = Fxp.shape

30

31 Fxp = Fxp.transpose (1,2).reshape(b,c,h,w)

32 TFxp = T(Fxp)

33 TFxp = TFxp.flatten (2).transpose (1,2)

34

35 # add back position encoding

36 TFx = torch.cat((x[:, 0:2], TFxp), dim =1)

37

38 return F.mse_loss(TFxp , FTx)

6.6.3 Model Architectures

In experiments, we use the following model architectures.

• Wide Residual Network (WRN) [208]: WRN-d-w represents wide ResNet with depth d

and width factor w.

• resnet [68]: We use ResNet-d to represent CIFAR-style resnet with 3 groups of basic

blocks, each with 16, 32, and 64 channels, respectively. In our experiments, resnet8x4

and resnet32x4 indicate a 4 times wider net- work (namely, with 64, 128, and 256 channels

for each of the blocks).

• ResNet [68]: ResNet-d represents ImageNet-style ResNet with bottleneck blocks and more

channels.

108

• MobileNetV2 [53]: In our experiments, we use a width multiplier of 0.5.

• vgg [165]: The vgg networks used in our experiments are adapted from their original

ImageNet counterpart.

• ShuffleNetV1 [211], ShuffleNetV2 [115]: ShuffleNets are proposed for efficient training and

we adapt them to input of size 32x32.

Implementation Details. Both the ImageNet and CIFAR experiments follow the same

training procedures as CRD [174]. However, for completeness, we choose to restate the details

here.

For the CIFAR-100 experiments we use the SGD optimizer with an initial learning rate of 0.05,

and with a decay of 0.1 every 30 epochs after the first 150 epochs until the last 240 epoch. For

MobileNetV2, ShuffleNetV1 and ShuffleNetV2, we use a learning rate of 0.01 as this learning

rate is optimal for these models in a grid search, while 0.05 is optimal for other models.

For the ImageNet experiments we train for 100 epochs with a 0.1 decay at epochs 30, 60, and

90. Further details are provided in the torchdistill library.

Finally, for the data-efficient training of transformers, we use the same training schedule as

DeIT [179]. This training pipeline uses the AdamW optimizer with Mixup, Cutmix and Ran-

dAugment. We choose a batch size of 512 on a single GPU.

109

Chapter 7

Conclusion

7.1 Summary of Contributions

The goal of this PhD was to improve our understanding of distillation and push the bound-

aries of model compression in the field of computer vision and machine learning in general.

The initial work in this thesis proposed a novel low-rank decomposition for descriptor learning

that was motivated and derived from an emergent property in the pre-trained weights. Subse-

quent work introduced a novel decomposition of convolutional weights alongside a mathematical

re-formulation to enable an efficient CUDA implementation on device. By coupling this de-

composition with standard pruning techniques, we could learn an appropriate rank for this

decomposition in each layer. Later works saw the generalisation of slimmable networks [201]

to enable arbitrary filter-wise pruning masks, thus improving the diversity of subnetworks and

subsequently the attainable downstream accuracy. This was then followed be a focus on knowl-

edge distillation, whereby two perspectives are proposed. The first being from an information-

theoretic background leading to state-of-the-art across all standard classification benchmarks,

while being significantly cheaper to adopt than other proposed in the literature. The follow up

work explored the training dynamics throughout the distillation procedure and in doing so led

to a simple method for distilling between transformers and CNNs.

110

7.2 Limitations

Although we do provide extensive experiments showing the generality of the proposed ap-

proaches given in this thesis, there are some obvious limitations. One limitation is applicable

to much of the empirical research in deep learning and that is on insufficient model guaran-

tees. These guarantees can be related to the robustness and failure modes found in practice.

Unfortunately, it is very difficult to provide guarantees on any particular deep learning method

without imposing strict constraints which in turn make the guarantees less applicable in prac-

tice. We are hoping that the divide between theory and practice will shrink in the near future

and subsequently aid in improving both the interpretability and robustness of models being

deployed in the wild.

7.3 Future Work

One immediate consequence of the later work in this PhD is on the topic of cross-architecture

distillation. There are still a lot of open questions about the design of projector networks

for distillation and how the differing inductive biases of the student-teacher pair comes into

play. By diving more into this theory, some novel applications may emerge that can address

some very relevant problems in the field of machine learning. The most obvious of which is on

reducing the amount of data needed to train and deploy large language model. Models such

as GPT-4 require a very large corpus of training data, which is inaccessible to most research

or industry labs. Knowledge distillation, and specifically the work that may build upon this

thesis, can directly begin to address and bridge this gap to make the training and deployment

of these models more accessible.

7.3.1 Data-Efficient Training

Geometric deep learning [20, 21] offers a framework for designing neural architectures that ex-

ploit the inherent symmetries present in the data. By explicitly incorporating these symmetries

111

into the network structure, we can enhance the data efficiency of the models. This enhanced

efficiency is also observed when transferring knowledge across different architectural designs.

When training deep learning models, one of the key challenges is to obtaining accurate results

with limited data, especially in domains like medical imaging where data scarcity is prevalent.

Geometric deep learning provides a way to mitigate this challenge. By enforcing these symme-

tries into underlying model architecture, we can effectively capture and exploit the underlying

structural patterns, leading to more efficient and accurate learning.

Moreover, when distilling knowledge from one model to another, the benefits of geometric deep

learning become even more pronounced. The ability to transfer knowledge across architectures

is not limited to explicit approaches alone. In fact, a combination of both explicit and implicit

approaches can be employed to maximize the advantages of data-efficient training. By combin-

ing the explicit enforcement of symmetries with the implicit regularisation from representation

distillation, we can create models that are not only capable of capturing intricate patterns but

also perform optimally with limited data resources.

7.3.2 Multi-Modality Models

Multi-modality models can understand information from multiple modalities, such as text, im-

ages, audio, and video. In the context of robotics, incorporating diverse sources of sensory

information can enable models to have a more unified and complete understanding of the envi-

ronment in a similar way to which humans perceive and interact with each other. Most of the

work developed in this thesis has focused on a single modality and tasks, but can very naturally

be extended to train more general and efficient models. Recent work has shown the promise of

utilising information from multiple modalities [77, 110, 8] and tasks [learningProject2022],

but a more general approach, and likely a very effective approach, in the context of knowl-

edge distillation has yet to be explored. Furthermore, memory efficient training [125] and

fine-tuning [78] can be used to make this research direction a lot more accessible to smaller

labs.

112

Bibliography

[1] Martin Abadi et al. “TensorFlow: Large-Scale Machine Learning on Heterogeneous Dis-

tributed Systems”. In: arXiv preprint (2016).

[2] Madhu Advani, Artemy Kolchinsky, and Brendan D Tracey. “On the information bot-

tleneck theory of deep learning”. In: ICLR (2018).

[3] Sungsoo Ahn et al. “Variational information distillation for knowledge transfer”. In:

CVPR (2019).

[4] Pablo Alcantarilla, Jesus Nuevo, and Adrien Bartoli. “Fast Explicit Diffusion for Accel-

erated Features in Nonlinear Scale Spaces”. In: BMVC (2013).

[5] Zeyuan Allen-Zhu and Yuanzhi Li. “Towards Understanding Ensemble, Knowledge Dis-

tillation and Self-Distillation in Deep Learning”. In: (Dec. 2020). url: http://arxiv.

org/abs/2012.09816.

[6] Relja Arandjelovic. “Three Things Everyone Should Know to Improve Object Retrieval”.

In: CVPR (2012).

[7] P A Y Attention, T O Snapshots, and O F Pruning. “Paying more Attention to Snap-

shots of Iterative Pruning : Improving Model Compression via Ensemble Distillation”.

In: (2020).

[8] Dylan Auty and Krystian Mikolajczyk. “ObjCAViT: Improving Monocular Depth Esti-

mation Using Natural Language Models And Image-Object Cross-Attention”. In: arXiv

preprint (2022).

[9] Dylan Auty et al. “Learning to Project for Cross-Task Knowledge Distillation”. In: arXiv

preprint (2024).

113

[10] Mart Van Baalen et al. “Bayesian Bits : Unifying Quantization and Pruning”. In:

NeurIPS (2020).

[11] Davide Bacciu and Danilo P. Mandic. “Tensor Decompositions in Deep Learning”. In:

(Feb. 2020).

[12] Vassileios Balntas et al. “HPatches: A benchmark and evaluation of handcrafted and

learned local descriptors”. In: CVPR. 2017.

[13] Vassileios Balntas et al. “Learning local feature descriptors with triplets and shallow

convolutional neural networks”. In: BMVC (2017).

[14] Adrien Bardes, Jean Ponce, and Yann LeCun. “VICReg: Variance-Invariance-Covariance

Regularization for Self-Supervised Learning”. In: ICLR (2022).

[15] Adrien Bardes, Jean Ponce, and Yann LeCun. “VICRegL: Self-Supervised Learning of

Local Visual Features”. In: NeurIPS (Oct. 2022).

[16] H Bay et al. “Speeded-Up Robust Features (SURF)”. In: Computer Vision and Image

Understanding (2008).

[17] Yoshua Bengio, Nicholas Léonard, and Aaron Courville. “Estimating or Propagating

Gradients Through Stochastic Neurons for Conditional Computation”. In: arXiv preprint

(2013).

[18] Lucas Beyer et al. “Knowledge distillation: A good teacher is patient and consistent”.

In: CVPR (2022).

[19] Rajendra Bhati. “Infinitely Divisible Matrices”. In: Transactions of the American Math-

ematical Society (1969).

[20] Michael M Bronstein et al. Geometric deep learning: going beyond Euclidean data. Tech.

rep.

[21] Michael M. Bronstein et al. “Geometric Deep Learning: Grids, Groups, Graphs, Geodesics,

and Gauges”. In: (Apr. 2021). url: http://arxiv.org/abs/2104.13478.

[22] Adrian Bulat and Georgios Tzimiropoulos. “XNOR-Net++: Improved Binary Neural

Networks”. In: BMVC (Sept. 2019).

114

[23] Michael Calonder et al. “Binary Robust Independent Elementary Features”. In: ECCV

(2010).

[24] Fabio M. Carlucci et al. “Domain Generalization by Solving Jigsaw Puzzles”. In: CVPR

(2019).

[25] Defang Chen et al. “Knowledge Distillation with the Reused Teacher Classifier”. In:

CVPR (2022).

[26] Hanting Chen et al. “AdderNet: Do We Really Need Multiplications in Deep Learning?”

In: CVPR (2020).

[27] Hong Yen Chen and Chung Yen Su. “An Enhanced Hybrid MobileNet”. In: iCAST

(2018).

[28] Liqun Chen et al. “Wasserstein Contrastive Representation Distillation”. In: CVPR

(2020).

[29] Pengguang Chen et al. “Distilling Knowledge via Knowledge Review”. In: CVPR (2021).

[30] Tianyi Chen et al. “Only Train Once: A One-Shot Neural Network Training And Pruning

Framework”. In: NeurIPS (2021).

[31] Ting Chen et al. “A simple framework for contrastive learning of visual representations”.

In: ICML (2020).

[32] Xiaohan Chen et al. “The Elastic Lottery Ticket Hypothesis”. In: NeurIPS ().

[33] Xinlei Chen and Kaiming He. “Exploring Simple Siamese Representation Learning”. In:

CVPR (2021).

[34] Xinlei Chen, Saining Xie, and Kaiming He. “An Empirical Study of Training Self-

Supervised Vision Transformers”. In: ICCV (Apr. 2021).

[35] Xinlei Chen et al. “Improved Baselines with Momentum Contrastive Learning”. In: arXiv

preprint (Mar. 2020).

[36] Yudong Chen et al. “Improved Feature Distillation via Projector Ensemble”. In: NeurIPS

(2022).

115

[37] François Chollet. “Xception: Deep Learning with Depthwise Separable Convolutions”.

In: CVPR (2017).

[38] Krzysztof Choromanski et al. “Rethinking Attention with Performers”. In: ICLR (Sept.

2020).

[39] Adam Coates, Honglak Lee, and Andrew Y. Ng. “An analysis of single-layer networks

in unsupervised feature learning”. In: JMLR (2011). issn: 15324435.

[40] Taco S. Cohen and Max Welling. “Group equivariant convolutional networks”. In: ICML

(2016).

[41] Marius Cordts et al. “The Cityscapes Dataset for Semantic Urban Scene Understand-

ing”. In: CVPR (2016).

[42] Matthieu Courbariaux et al. “Binarized Neural Networks: Training Neural Networks

with Weights and Activations Constrained to +1 or -1”. In: arXiv preprint (2016).

[43] Ekin D. Cubuk et al. “Randaugment: Practical automated data augmentation with a

reduced search space”. In: CVPR Workshop (2020).

[44] Daniel Detone, Tomasz Malisiewicz, and Andrew Rabinovich. “SuperPoint: Self-supervised

interest point detection and description”. In: ICPR (2018).

[45] Jacob Devlin et al. “BERT: Pre-training of Deep Bidirectional Transformers for Lan-

guage Understanding”. In: (2019).

[46] Ruizhou Ding et al. “Regularizing activation distribution for training binarized deep

networks”. In: CVPR (2019).

[47] Xiaohan Ding et al. “Approximated Oracle Filter Pruning for Destructive CNN Width

Optimization”. In: ICML (May 2019).

[48] Carl Doersch, Abhinav Gupta, and Alexei A. Efros. “Unsupervised Visual Representa-

tion Learning by Context Prediction”. In: ICCV (May 2015).

[49] Xin Dong, Shangyu Chen, and Sinno Jialin Pan. “Learning to Prune Deep Neural Net-

works via Layer-wise Optimal Brain Surgeon”. In: NeurIPS (2017).

116

[50] Alaaeldin El-Nouby et al. “XCiT: Cross-Covariance Image Transformers”. In: NeurIPS

(2021).

[51] Aleksandr Ermolov et al. “Whitening for Self-Supervised Representation Learning”. In:

ICML (July 2020).

[52] Charles Fefferman, Sanjoy Mitter, and Hariharan Narayanan. “Testing the Manifold

Hypothesis”. In: arXiv preprint (Oct. 2013).

[53] Michael H. Fox, Kyungmee Kim, and David Ehrenkrantz. “MobileNetV2: Inverted Resid-

uals and Linear Bottlenecks”. In: CVPR (2018).

[54] Jonathan Frankle et al. “Linear mode connectivity and the lottery ticket hypothesis”.

In: ICML (2020).

[55] Spyros Gidaris, Praveer Singh, and Nikos Komodakis. “Unsupervised Representation

Learning by Predicting Image Rotations”. In: ICLR (Mar. 2018).

[56] Ruihao Gong et al. “Differentiable soft quantization: Bridging full-precision and low-bit

neural networks”. In: ICCV (2019). issn: 15505499.

[57] Ariel Gordon et al. “MorphNet: Fast & Simple Resource-Constrained Structure Learning

of Deep Networks”. In: CVPR (2018).

[58] Jean Bastien Grill et al. “Bootstrap your own latent a new approach to self-supervised

learning”. In: NeurIPS (2020).

[59] Jia Guo et al. “Reducing the Teacher-Student Gap via Spherical Knowledge Distilla-

tion”. In: arXiv preprint (2020).

[60] Shaopeng Guo et al. “DMCP: Differentiable Markov Channel Pruning for Neural Net-

works”. In: CVPR (2020).

[61] Kai Han et al. “GhostNet: More Features from Cheap Operations”. In: CVPR (2019).

[62] Song Han, Huizi Mao, and William J. Dally. “Deep Compression: Compressing Deep

Neural Networks with Pruning, Trained Quantization and Huffman Coding”. In: ICLR

(2015).

117

[63] Babak Hassibi and David G Stork. “Second order derivatives for network pruning: Op-

timal Brain Surgeon”. In: NeurIPS (1993).

[64] Kohei Hayashi et al. “Einconv: Exploring Unexplored Tensor Decompositions for Con-

volutional Neural Networks”. In: NeurIPS 2019 (2019).

[65] Bobby He and Mete Ozay. “Feature Kernel Distillation”. In: ICLR (2022).

[66] Kaiming He et al. “Masked Autoencoders Are Scalable Vision Learners”. In: CVPR

(Nov. 2022).

[67] Kaiming He et al. “Momentum Contrast for Unsupervised Visual Representation Learn-

ing”. In: CVPR (Nov. 2020).

[68] Kaiming He et al. “ResNet - Deep Residual Learning for Image Recognition”. In: CVPR

(2015).

[69] Yang He et al. “Filter Pruning via Geometric Median for Deep Convolutional Neural

Networks Acceleration”. In: CVPR (2018).

[70] Yihui He, Xiangyu Zhang, and Jian Sun. “Channel Pruning for Accelerating Very Deep

Neural Networks”. In: ICCV. 2017.

[71] Zhiqiang He et al. “Filter Pruning via Feature Discrimination in Deep Neural Networks”.

In: ECCV. 2022.

[72] Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. “Distilling the Knowledge in a Neural

Network”. In: NeurIPS (2015).

[73] Geoffrey Hinton et al. “On the importance of initialization and momentum in deep

learning”. In: ICML (2013).

[74] Frank L. Hitchcock. “The Expression of a Tensor or a Polyadic as a Sum of Products”.

In: JMP (2015).

[75] Andrew Howard et al. “Searching for MobileNetV3”. In: ICCV (2019).

[76] Andrew G Howard et al. “MobileNets: Efficient Convolutional Neural Networks for Mo-

bile Vision Applications”. In: arXiv preprint (2017).

118

[77] Lukas Hoyer et al. Three Ways to Improve Semantic Segmentation with Self-Supervised

Depth Estimation. 2021.

[78] Edward J Hu et al. “LoRA: Low-Rank Adaptation of Large Language Models”. In: ICLR

(2022).

[79] Hengyuan Hu et al. “Network Trimming: A Data-Driven Neuron Pruning Approach

towards Efficient Deep Architectures”. In: arXiv (2016).

[80] Qiangui Huang et al. “Learning to prune filters in convolutional neural networks”. In:

WACV (2018).

[81] Zehao Huang and Naiyan Wang. “Like What You Like: Knowledge Distill via Neuron

Selectivity Transfer”. In: arXiv preprint (2017).

[82] Max Jaderberg, Andrea Vedaldi, and Andrew Zisserman. “Speeding up convolutional

neural networks with low rank expansions”. In: BMVC. 2014.

[83] Eric Jang, Shixiang Gu, and Ben Poole. “Categorical Reparameterization with Gumbel-

Softmax”. In: ICLR (2017).

[84] Donggyu Joo et al. “Linearly Replaceable Filters for Deep Network Channel Pruning”.

In: AAAI. 2021.

[85] Chaitanya K. Joshi et al. “On Representation Knowledge Distillation for Graph Neural

Networks”. In: arXiv preprint (Nov. 2021).

[86] Andrew Kerr, Dan Campbell, and Mark Richards. “QR decomposition on GPUs”. In:

Proceedings of 2nd Workshop on General Purpose Processing on Graphics Processing

Units, GPGPU-2 (2009).

[87] Jangho Kim, Seong Uk Park, and Nojun Kwak. “Paraphrasing complex network: Net-

work compression via factor transfer”. In: NeurIPS (2018).

[88] Yong-Deok Kim et al. “Compression of Deep Convolutional Neural Networks for Fast

and Low Power Mobile Applications”. In: ICLR (2015).

[89] Benedikt Kolbeinsson and Krystian Mikolajczyk. “DDOS: The Drone Depth and Ob-

stacle Segmentation Dataset”. In: arXiv preprint (2023).

119

[90] Benedikt Kolbeinsson and Krystian Mikolajczyk. “Multi-Class Segmentation from Aerial

Views using Recursive Noise Diffusion”. In: WACV (2024).

[91] Alex Krizhevsky. “Learning Multiple Layers of Features from Tiny Images”. In: (2009).

[92] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. “ImageNet Classification with

Deep Convolutional Neural Networks”. In: NeurIPS (2012).

[93] Yann Lecun. “Optimal Brain Damage”. In: NeurIPS (1990).

[94] Namhoon Lee, Thalaiyasingam Ajanthan, and Philip H.S. Torr. “SnIP: Single-shot net-

work pruning based on connection sensitivity”. In: ICLR. 2019.

[95] Hao Li et al. “Pruning Filters For Efficient Convnets”. In: ICLR (2017).

[96] Shanda Li et al. “Can Vision Transformers Perform Convolution?” In: arXiv preprint

(Nov. 2021).

[97] Yawei Li et al. “Group Sparsity: The Hinge Between Filter Pruning and Decomposition

for Network Compression”. In: CVPR (2020).

[98] Tailin Liang et al. “Pruning and Quantization for Deep Neural Network Acceleration:

A Survey”. In: arXiv preprint (Jan. 2021).

[99] Mingbao Lin et al. “Channel Pruning via Automatic Structure Search”. In: IJCAI. Jan.

2020.

[100] Mingbao Lin et al. “Filter Sketch for Network Pruning”. In: arXiv (2019).

[101] Mingbao Lin et al. “HRank: Filter Pruning using High-Rank Feature Map”. In: CVPR

(2020).

[102] Mingbao Lin et al. “Rotated binary neural network”. In: NeurIPS (2020).

[103] Tsung Yi Lin et al. “Microsoft COCO: Common objects in context”. In: ECCV (2014).

[104] Jiayi Liu et al. “Pruning Algorithms to Accelerate Convolutional Neural Networks for

Edge Applications: A Survey”. In: arXiv preprint (May 2020).

[105] Li Liu et al. “Exploring Inter-Channel Correlation for Diversity-preserved Knowledge

Distillation”. In: ICCV (2021).

120

[106] Yifan Liu et al. “Structured Knowledge Distillation for Semantic Segmentation”. In:

CVPR (2019).

[107] Yuchen Liu, David Wentzlaff, and S. Y. Kung. “Rethinking Class-Discrimination Based

CNN Channel Pruning”. In: arXiv preprint. Apr. 2020.

[108] Zechun Liu and Tim Kwang-ting Cheng. “MetaPruning: Meta Learning for Automatic

Neural Network Channel Pruning”. In: ICCV. 2019.

[109] Zhuang Liu et al. “Rethinking The Value Of Network Pruning”. In: ICLR (2019).

[110] Adrian Lopez-Rodriguez and Krystian Mikolajczyk. DESC: Domain Adaptation for

Depth Estimation via Semantic Consistency. 2020.

[111] Christos Louizos, Max Welling, and Diederik P. Kingma. “Learning Sparse Neural Net-

works through $L 0$ Regularization”. In: ICLR (Dec. 2017).

[112] David G Lowe. SIFT - Distinctive Image Features from Scale-Invariant Keypoints. Tech.

rep. 2004.

[113] Jian Hao Luo, Jianxin Wu, and Weiyao Lin. “ThiNet: A Filter Level Pruning Method

for Deep Neural Network Compression”. In: ICCV. 2017.

[114] Zixin Luo et al. “GeoDesc: Learning local descriptors by integrating geometry con-

straints”. In: ECCV (2018).

[115] Ningning Ma et al. “Shufflenet V2: Practical guidelines for efficient cnn architecture

design”. In: Lecture Notes in Computer Science. 2018.

[116] Yuchen Ma, Yanbei Chen, and Zeynep Akata. “Distilling Knowledge from Self-Supervised

Teacher by Embedding Graph Alignment”. In: BMVC (Nov. 2022).

[117] Yoshitomo Matsubara. “torchdistill : A Modular, Configuration-Driven Framework for

Knowledge Distillation”. In: ICPR Workshop on Reproducible Research in Pattern Recog-

nition (2020).

[118] Roy Miles, Ismail Elezi, and Jiankang Deng. “VkD: Improving Knowledge Distillation

using Orthogonal Projections”. In: CVPR (2024).

121

[119] Roy Miles and Krystian Mikolajczyk. “Cascaded channel pruning using hierarchical self-

distillation”. In: BMVC (2020).

[120] Roy Miles and Krystian Mikolajczyk. “Compression of descriptor models for mobile

applications”. In: ICASSP (2021).

[121] Roy Miles and Krystian Mikolajczyk. “Reconstructing Pruned Filters using Cheap Spa-

tial Transformations”. In: ICCV Workshop on Resource Efficient Deep Learning for

Computer Vision (2023).

[122] Roy Miles and Krystian Mikolajczyk. “Understanding the Role of the Projector in

Knowledge Distillation”. In: AAAI (2024).

[123] Roy Miles, Adrian Lopez Rodriguez, and Krystian Mikolajczyk. “Information Theoretic

Representation Distillation”. In: BMVC (Dec. 2022).

[124] Roy Miles et al. “MobileVOS: Real-Time Video Object Segmentation Contrastive Learn-

ing meets Knowledge Distillation”. In: CVPR (Mar. 2023).

[125] Roy Miles et al. “VeLoRA: Memory Efficient Training using Rank-1 Sub-Token Projec-

tions”. In: arXiv preprint (2024).

[126] Ilya Mironov. “Rényi Differential Privacy”. In: Proceedings - IEEE Computer Security

Foundations Symposium (2017). issn: 19401434.

[127] Seyed-Iman Mirzadeh et al. “Improved Knowledge Distillation via Teacher Assistant:

Bridging the Gap Between Student and Teacher”. In: AAAI (2020).

[128] Anastasiya Mishchuk et al. “Working hard to know your neighbor’s margins: Local

descriptor learning loss”. In: NeurIPS (2017).

[129] Pavlo Molchanov et al. “Importance Estimation for Neural Network Pruning”. In: CVPR

(2019).

[130] Shinichi Nakajima et al. “Global Analytic Solution of Fully-observed Variational Bayesian”.

In: JMLR (2013).

[131] K L Navaneet et al. “SimReg: Regression as a Simple Yet Effective Tool for Self-

supervised Knowledge Distillation”. In: BMVC (Jan. 2021).

122

[132] Michal Nazarczuk and Krystian Mikolajczyk. “SHOP-VRB: A Visual Reasoning Bench-

mark for Object Perception”. In: ICRA (2020).

[133] Kien Nguyen et al. “Iris Recognition with Off-the-Shelf CNN Features: A Deep Learning

Perspective”. In: IEEE Access (Dec. 2017).

[134] Alexander Novikov et al. “Tensorizing Neural Networks”. In: NeurIPS (2015).

[135] Junghun Oh et al. “Batch Normalization Tells You Which Filter is Important”. In:

WACV (2022).

[136] Yuki Ono et al. “LF-Net: Learning local features from images”. In: NeurIPS (2018).

[137] Wonpyo Park et al. “Relational Knowledge Distillation”. In: CVPR (2019).

[138] Nikolaos Passalis and Anastasios Tefas. “Learning Deep Representations with Proba-

bilistic Knowledge Transfer”. In: ECCV (2018).

[139] Adam Paszke et al. “Automatic differentiation in PyTorch”. In: (2017).

[140] Baoyun Peng et al. “Correlation congruence for knowledge distillation”. In: CVPR

(2019).

[141] Qi Qian, Hao Li, and Juhua Hu. “Efficient Kernel Transfer in Knowledge Distillation”.

In: arXiv (2020).

[142] Haotong Qin et al. “Forward and Backward Information Retention for Accurate Binary

Neural Networks”. In: CVPR (2020).

[143] Zhuwei Qin et al. “CAPTOR: A Class Adaptive Filter Pruning Framework for Convo-

lutional Neural Networks in Mobile Applications”. In: ASPDAC. 2019.

[144] Ilija Radosavovic et al. “Data Distillation: Towards Omni-Supervised Learning”. In:

CVPR (2018).

[145] Pranav Rajpurkar et al. “SQuAD: 100, 000+ Questions for Machine Comprehension of

Text”. In: EMNLP (2016).

[146] Vivek Ramanujan et al. “What’s Hidden in a Randomly Weighted Neural Network?”

In: CVPR (2019).

123

[147] Mohammad Rastegari et al. “XNOR-Net: ImageNet Classification Using Binary Convo-

lutional Neural Networks”. In: ECCV (2016).

[148] Joseph Redmon and Ali Farhadi. “YOLO9000: Better, faster, stronger”. In: Proceedings

- 30th IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2017.

2017. isbn: 9781538604571. doi: 10.1109/CVPR.2017.690.

[149] Sucheng Ren et al. “Co-advise: Cross Inductive Bias Distillation”. In: CVPR (2022).

[150] Alfréd Rényi. “On Measures of Entropy and Information”. In: Proceedings of the fourth

Berkeley Symposium on Mathematics, Statistics and Probability (1960).

[151] Adriana Romero et al. “FitNets: Hints For Thin Deep Nets”. In: ICLR (2015).

[152] Olaf Ronneberger, Philipp Fischer, and Thomas Brox. “U-Net: Convolutional Networks

for Biomedical Image Segmentation”. In: MICCAI (May 2015).

[153] Edward Rosten and Tom Drummond. “Machine Learning for High-Speed Corner Detec-

tion”. In: ECCV. 2006.

[154] Xiaofeng Ruan et al. “DPFPS: Dynamic and Progressive Filter Pruning for Compressing

Convolutional Neural Networks from Scratch”. In: AAAI. 2021.

[155] Olga Russakovsky et al. “ImageNet Large Scale Visual Recognition Challenge”. In: IJCV

(2014).

[156] Noveen Sachdeva and Julian McAuley. “Data Distillation: A Survey”. In: (Jan. 2023).

url: http://arxiv.org/abs/2301.04272.

[157] Luis G. Sanchez Giraldo and Jose C. Principe. “Information theoretic learning with

infinitely divisible kernels”. In: ICLR (2013).

[158] Luis Gonzalo Sanchez Giraldo, Murali Rao, and Jose C. Principe. “Measures of entropy

from data using infinitely divisible Kernels”. In: IEEE Transactions on Information

Theory (2015).

[159] Victor Sanh et al. “DistilBERT, a distilled version of BERT: smaller, faster, cheaper and

lighter”. In: NeurIPS Workshop on Energy Efficient Machine Learning and Cognitive

Computing (2019).

124

[160] B. H. Shekar et al. “Face recognition using kernel entropy component analysis”. In:

Neurocomputing (2011).

[161] Nicholas D. Sidiropoulos et al. “Tensor Decomposition for Signal Processing and Machine

Learning”. In: IEEE Transactions on Signal Processing (2017). issn: 1053587X. doi:

10.1109/TSP.2017.2690524.

[162] Laurent Sifre and Stephane Mallat. “Rigid-Motion Scattering For Image Classification”.

PhD thesis. 2014.

[163] Vin de Silva and Lek-Heng Lim. “Tensor rank and the ill-posedness of the best low-rank

approximation problem”. In: SIAM (2006).

[164] B.W. Silverman. “Density estimation for statistics and data analysis”. In: Monographs

on Statistics and Applied Probability (1986).

[165] Karen Simonyan and Andrew Zisserman. “Very Deep Convolutional Networks For Large-

scale Image Recognition”. In: ICLR (2015).

[166] Brijraj Singh, Durga Toshniwal, and Sharan Kumar Allur. “Shunt connection: An intel-

ligent skipping of contiguous blocks for optimizing MobileNet-V2”. In: Neural Networks

(2019).

[167] Arvind Subramaniam and Avinash Sharma. “N2NSkip: Learning Highly Sparse Net-

works using Neuron-to-Neuron Skip Connections”. In: BMVC (2020).

[168] Christian Szegedy et al. “GoogLeNet/Inception - Going deeper with convolutions”. In:

CVPR. 2015.

[169] Mingxing Tan and Quoc V. Le. “EfficientNet: Rethinking model scaling for convolutional

neural networks”. In: ICML (2019).

[170] Mingxing Tan et al. “MnasNet: Platform-Aware Neural Architecture Search for Mobile”.

In: CVPR (2018).

[171] Yehui Tang et al. “SCOP: Scientific Control for Reliable Neural Network Pruning”. In:

NeurIPS. Oct. 2020.

125

[172] “The lottery ticket hypothesis : Finding sparse, Trainable neural Networks”. In: ICLR

(2019).

[173] Yonglong Tian, Olivier J. Henaff, and Aaron van den Oord. “Divide and Contrast: Self-

supervised Learning from Uncurated Data”. In: ICCV (May 2021).

[174] Yonglong Tian, Dilip Krishnan, and Phillip Isola. “Contrastive representation distilla-

tion”. In: ICLR (2019).

[175] Yuandong Tian, Xinlei Chen, and Surya Ganguli. “Understanding self-supervised Learn-

ing Dynamics without Contrastive Pairs”. In: ICML (2021).

[176] Yurun Tian, Bin Fan, and Fuchao Wu. “L2-Net: Deep Learning of Discriminative Patch

Descriptor in Euclidean Space”. In: CVPR (2017).

[177] Yurun Tian et al. “Sosnet: Second order similarity regularization for local descriptor

learning”. In: CVPR (2019).

[178] Naftali Tishby. “Deep Learning and the Information Bottleneck Principle”. In: IEEE

Information Theory Workshop (ITW) (2015).

[179] Hugo Touvron et al. “Training data-efficient image transformers & distillation through

attention”. In: PMLR (2021).

[180] Linh Tran et al. “Hydra: Preserving Ensemble Diversity for Model Distillation”. In:

(2020). url: http://arxiv.org/abs/2001.04694.

[181] Ledyard R Tucker. “Some mathematical notes on three-mode factor analysis”. In: Psy-

chometrika (1966).

[182] Fred Tung and Greg Mori. “Similarity-preserving knowledge distillation”. In: ICCV

(2019).

[183] Yaman Umuroglu et al. “FINN: A framework for fast, scalable binarized neural network

inference”. In: FPGA 2017. 2017.

[184] Ashish Vaswani et al. “Attention is all you need”. In: NeurIPS (2017).

[185] Tao Wang et al. “Distilling Object Detectors with Fine-grained Feature Imitation”. In:

CVPR (June 2019).

126

[186] Wenqi Wang, Brian Eriksson, and Wenlin Wang. “Wide Compression : Tensor Ring

Nets”. In: CVPR (2018).

[187] WenxiaoWang et al. “COP: Customized deep model compression via regularized correlation-

based filter-level pruning”. In: IJCAI (2019).

[188] Wei Wen et al. “Learning Structured Sparsity in Deep Neural Networks”. In: NeurIPS

(2016).

[189] Paul L. Williams and Randall D. Beer. “Nonnegative Decomposition of Multivariate

Information”. In: (2010).

[190] Tong Xiao et al. “Sharing Attention Weights for Fast Transformer”. In: IJCAI (June

2019).

[191] Guodong Xu et al. “Knowledge Distillation Meets Self-supervision”. In: ECCV (2020).

[192] Keyulu Xu et al. “How Neural Networks Extrapolate: From Feedforward to Graph Neural

Networks”. In: ICLR (2020).

[193] Zihan Xu et al. “ReCU: Reviving the Dead Weights in Binary Neural Networks”. In:

ICCV (2021).

[194] Le Ya and Yang Xuan. “Tiny imagenet visual recognition challenge”. In: (2015).

[195] Chuanguang Yang et al. “Hierarchical Self-supervised Augmented Knowledge Distilla-

tion”. In: IJCAI (2021).

[196] Zhaohui Yang et al. “Searching for low-bit weights in quantized neural networks”. In:

NeurIPS (2020). issn: 10495258.

[197] Ziqing Yang et al. “TextBrewer: An Open-Source Knowledge Distillation Toolkit for

Natural Language Processing”. In: ACL (2020).

[198] Junho Yim. “A Gift from Knowledge Distillation: Fast Optimization, Network Mini-

mization and Transfer Learning”. In: CVPR (2017).

[199] Jiahui Yu and Thomas Huang. “AutoSlim: Towards One-Shot Architecture Search for

Channel Numbers”. In: arXiv preprint (2019).

127

[200] Jiahui Yu and Thomas Huang. “Universally Slimmable Networks and Improved Training

Techniques”. In: ICCV (2019).

[201] Jiahui Yu et al. “Slimmable Neural Networks”. In: ICLR (2018).

[202] Ruichi Yu et al. “NISP: Pruning Networks Using Neuron Importance Score Propaga-

tion”. In: CVPR (2018).

[203] Shujian Yu and José C. Pŕıncipe. “Understanding autoencoders with information theo-

retic concepts”. In: Neural Networks (2019).

[204] Shujian Yu et al. “Understanding Convolutional Neural Networks With Information The-

ory: An Initial Exploration”. In: IEEE Transactions on Neural Networks and Learning

Systems (2020).

[205] Xi Yu, Shujian Yu, and José C. Pŕıncipe. “Deep deterministic information bottleneck

with matrix-based entropy functional”. In: ICASSP (2021).

[206] Chulhee Yun et al. “Are Transformers universal approximators of sequence-to-sequence

functions?” In: ICLR (2020).

[207] Sergey Zagoruyko and Nikos Komodakis. “Paying more attention to attention: Improving

the performance of convolutional neural networks via attention transfer”. In: ICLR. 2019.

[208] Sergey Zagoruyko and Nikos Komodakis. “Wide Residual Networks”. In: BMVC (2016).

[209] Jure Zbontar et al. “Barlow Twins: Self-Supervised Learning via Redundancy Reduc-

tion”. In: ICML (2021).

[210] Richard Zhang, Phillip Isola, and Alexei A. Efros. “Colorful Image Colorization”. In:

Mar. 2016.

[211] Xiangyu Zhang, Xinyu Zhou, and Mengxiao Lin. “ShuffleNet: An Extremely Efficient

Convolutional Neural Network for Mobile Devices”. In: CVPR (2018).

[212] Youcai Zhang et al. “Prime-Aware Adaptive Distillation”. In: ECCV (2020).

[213] Borui Zhao, Renjie Song, and Yiyu Qiu. “Decoupled Knowledge Distillation”. In: CVPR

(2022).

128

[214] Chenglong Zhao et al. “Variational Convolutional Neural Network Pruning”. In: CVPR

(2019).

[215] Hattie Zhou et al. “Deconstructing Lottery Tickets: Zeros, Signs, and the Supermask”.

In: NeurIPS NeurIPS (2019).

[216] Shuchang Zhou et al. “DoReFa-Net: Training Low Bitwidth Convolutional Neural Net-

works with Low Bitwidth Gradients”. In: arXiv preprint (2016).

[217] Yuefu Zhou et al. “Accelerate CNN via Recursive Bayesian Pruning”. In: ICCV (2018).

[218] Jinguo Zhu et al. “Complementary Relation Contrastive Distillation”. In: CVPR (2021).

[219] Xingkui Zhu et al. “TPH-YOLOv5: Improved YOLOv5 Based on Transformer Prediction

Head for Object Detection on Drone-captured Scenarios”. In: VisDrone ICCV workshop

(Aug. 2021).

[220] Tao Zhuang et al. “Neuron-level Structured Pruning using Polarization Regularizer”. In:

NeurIPS. 2022.

[221] Zhuangwei Zhuang et al. “Discrimination-aware Channel Pruning for Deep Neural Net-

works”. In: NeurIPS (2018).

129

