
VkD : Improving Knowledge Distillation using
Orthogonal Projections
Roy Miles, Ismail Elezi, Jiankang Deng

Huawei Noah’s Ark Lab

Overview

We introduce a simple and cheap constrained feature distillation pipeline

derived from a core set of principles. These principles lead us to two

main components: (i) an orthogonal projection layer; and (ii) task-specific

feature normalization.

Stiefel Manifold

Teacher

Orthogonal

Projection

Task-specific

Normalisation

(a)

(b)

Student

Standardisation

Generative tasks

Whitening

5 10 15 20 25
Model Size (M)

72

74

76

78

80

82

To
p-

1
A

cc
ur

ac
y

(%
)

DeiT-Ti

DeiT-S

DeiT-Ti

DeiT-S

Ours-Ti

Ours-STeacher

Top-1 Accuracy on ImageNet

DeiT

DeiT with KD

Ours

Our transformer models surpass previ-

ous methods on ImageNet, achieving

up to a 4.4% relative improvement.

Applied to object detection and

image generation, our approach con-

sistently outperforms state-of-the-art

techniques, demonstrating its gener-

ality and effectiveness.

Background and limitations

Although feature distillation is agnostic to the underlying task or modality, most

proposed methods incur significant memory and computational overheads due

to the construction of expensive relational objects.

Generalising knowledge distillation to other tasks is often difficult. There is no

simple framework for introducing domain/task-specific priors.

Contributions

Our contributions can be summarized as follows

We propose a novel orthogonal projection layer to maximise the knowledge

being distilled through to the student backbone.

We complement our projection with a task-wise normalisation that enables

knowledge distillation on generative tasks.

We apply our method to a wide range of vision tasks, improving over the

state-of-the-art by up to 4.4% on ImageNet.

Why use orthogonal projections?

A learnable projection layer is needed to match the feature dimensions.

However, we wish to mitigate the possibility of this layer learning any new

representation of the data that is not shared by the feature extractor.

This is crucial because the projection layer is discarded after training, and our

end goal is to align the feature extractor with the teacher.

To this end, we propose a projection that preserves the pair-wise similarity of

features through the projection layer.

This pair-wise similarity can be expressed using a kernel function:

k(Zs
i , Zs

j) =
∞∑

n=0
an 〈Zs

i , Zs
j〉

n
(1)

Which is preserved under any orthogonal transformation P.

Zs
i(Zs

j)T = Zs
iP(Zs

jP)T = Zs
iPPT (Zs

j)T → PT = P−1 (2)

This constraint defines the set of matrices with orthonormal rows.

Enforcing this constraint is expensive. We need an efficient parameterization.

Efficient orthogonal parameterization

Knowledge distillation is already very memory and computationally

intensive, thus we do want to introduce any additional overheads by

using a parameterised projection layer.

Algorithm 1 VkD, Pytorch-like

W: dt x dt
Zs: B x N x ds
Zt: B x dt

def distill_loss(Zs, Zt):
average pool over token -dim
Zs = Zs.mean(1)

orthogonal projection
A = torch.linalg.matrix_exp(W)
P = A[:, 0:ds]
Zs = F.linear(Zs, P)

task -specific normalisation
Zt = F.layer_norm(Zt)

loss = F.mse_loss(Zs, Zt)
return loss

Although the Cayley transformation

can construct orthogonal matrices

from skew-symmetric matrices, it

does require computing the inverse

of a potentially very large matrix,

which will incur a significant memory

overhead.

We propose to perform a cheap

parameterisation map onto SO(dt)
using the matrix exponential and

then truncate the excess columns.

Introducing domain-specific priors

Standardisation improves model convergence. We empirically find that standar-

dising the teacher features across the depth, i.e. Layer Norm, improves model

convergence by smoothing the loss landscape.

Whitening improves feature diversity. Applying KD to image generation often

requires additional diversity losses. We find that simply whitening the teacher

features is sufficient for unifying the diversity and distillation objectives.

Data-efficient training of transformermodels

Network acc@1 #params

DeiT-Ti 72.2 5M

CivT-Ti 74.9 6M

DeiT-Ti ⚗ 74.5 6M

�

1000 epochs 76.6 6M

DearKD 74.8 6M

�

1000 epochs 77.0 6M

VkD-Ti 79.2 6M

DeiT-S 79.8 22M

CivT-S 82.0 22M

DeiT-S ⚗ 81.2 22M

�

1000 epochs 82.6 22M

DearKD 81.5 22M

�

1000 epochs 82.8 22M

VkD-S 82.9 22M

We observe a significant improvement over

both DeiT and CivT when the capacity

gap is large. We also achieve competitive

performance to other distillation methods

that are trained for 1000 epochs.

CivT requires multiple teacher models, while

DearKD uses intermediate feature losses. In

contrast, our method is both simple and easy

to implement, while showing strong model

convergence.

To further demonstrate the generality of our

proposed pipeline, we also conduct experi-

ments with ViDT for object detection. See

our paper for more details on this!

To shed some insight into why our

method is more effective, we look at

the intermediate feature maps. We

find that forcing all the patch to-

kens to more closely align with the

teacher features will provide a more

stronger equivariance objective than

using just a single distillation token.

Input Deit-Ti VkD-Ti

Data limited image generation

We have shown how and why cross-architecture distillation improves

data-efficiency, but how can we improve data-efficiency in the

same-architecture setting? For image generation, we find that whitening

the teacher features is very important here.

Although only using layer norm

and an orthogonal projection

does generalise well to this task,

whitening introduces more appro-

priate task-specific priors.

This simple modification then

outperforms KD-DLGAN, a single

task-specific KD method, across

both the CIFAR10 and CIFAR100

datasets and also at various levels

of data scarcity.

CIFAR-10 CIFAR-100
Method

10% Data 10% Data

DA (Baseline) 23.34 ± 0.09 35.39 ± 0.08
FitNets 22.03 ± 0.07 33.93 ± 0.09
PKD 21.34 ± 0.08 32.15 ± 0.13
SPKD 19.11 ± 0.07 31.97 ± 0.10
KD-DLGAN 14.20 ± 0.06 18.03 ± 0.11
VkD 16.47 ± 0.07 24.92 ± 0.15

�

w/ whitening 13.16 ± 0.06 16.87 ± 0.09

Github: github.com/roymiles/vkd roy.miles12@gmail.com

https://github.com/roymiles/vkd
mailto:roy.miles12@gmail.com

