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Background

Video Object Segmentation (VOS) is a crucial aspect of computer vision, and it

has been applied across numerous applications such as video editing,

surveillance, autonomous driving, and augmented reality.

VOS involves the identification and tracking of objects across multiple frames

in a video sequence.

Our work is primarily on the topic of Semi-supervised Video Object

Segmentation (SVOS), a scenario in which only the initial frame provides an

object description.

The difficulty of SVOS lies in being able to track an object under difference views

and severe occlusions, while similarly performing in a class agnostic manner.

Limitations

The current state-of-the-art relies on space-time-memory networks (STM), which

relies on densely matching features from previous frames.

The STM memory model scales poorly for longer video sequences and introduces

problems, such as drift, where the model can catastrophically degrade in perfor-

mance over time.

Contributions

Our contributions can be summarized as follows

1. We introduce a new loss function that unifies representation distillation and

supervised contrastive learning to address the gap between large and small

memory models. Additionally, we proposes a boundary-aware pixel

sampling strategy that further improves results and model convergence.

2. By using this unified loss, we demonstrate that a common network design

can achieve performance comparable performance to state-of-the-art

models, while being up to 5x faster and having 32x fewer parameters.

3. The proposed loss function enables real-time performance (30FPS+) on

mobile devices like the Samsung Galaxy S22 without the need for complex

architectural or memory design changes, while still maintaining competitive

performance with state-of-the-art models.

4. MobileVOS is also shown to be robust to domain shift and shot changes.
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To enable real-time performance, we use a much smaller MobileNet backbone.

To encourage temporally consistent features, we distill knowledge a pre-trained

infinite memory teacher.

Unifying contrastive learning and knowledge distillation

Wepropose a novel unification of both representation distillation and supervised

contrastive representation learning. This is achieved through the following ob-

jective.

Lrepr = 1
| Cs |

(
log2 ‖Cs‖2 − log2 ‖Cs � Ct‖2

)
(1)

where Cs, Ct ∈ IRHW×HW capture the relationship between all pairs of pixels in

the student and teacher feature space respectively.

By introducing known relationships between the pixel-wise features, we can pro-

vide a natural scheme to interpolate between knowledge distillation and super-

vised constrastive learning.

Cty = ωCt + (1 − ω)YYT (2)

In the case where ω = 0, we arrive at a familiar supervised constrastive setting.

Lrepr → LSupCon = − 1
| Cs |

log2
∑

i

∑
j∈Pi

sim(Zi, Zj)∑
k sim(Zi, Zk)

(3)

Boundary-aware sampling

Sampling the boundary pixels not only improves model convergence and addresses

observed limitations of SVOS models, but also significantly reduces the memory

constraints in constructing these matrices.

Figure 1. Prediction errors, shown in cyan, can typically occur on the boundaries of the

segmented object, thus motivating the emphasis on distilling and contrasting boundary pixels.

Comparisons to state-of-the-art

Method CC J &F FPS

STM† 7 89.3 6.3

MiVOS†∗ 7 91.0 16.9

STCN†∗ 7 91.7 26.9

BATMAN 7 92.5 -

XMem†∗ 7 92.0 29.6

SwiftNet† 3 90.4 25.0

RDE-VOS†∗ 3 91.6 35.0

MobileVOS

ResNet18†∗ 3 91.4 100.1

MobileNetV2† 3 90.5 81.8

�

wo/ ASPP† 3 90.1 86.0

Method CC J &F J F FPS

STM† 7 81.8 79.2 84.3 10.2

STCN†∗ 7 85.3 82.0 88.6 20.2

BATMAN 7 86.2 83.2 89.4 -

XMem†∗ 7 87.7 84.0 91.4 22.6

SwiftNet† 3 81.1 78.3 83.9 <25.0

RDE-VOS†∗ 3 86.1 82.1 90.0 27.0

MobileVOS

ResNet18†∗ 3 85.0 81.7 88.3 90.6

MobileNetV2† 3 82.2 78.7 85.7 79.1

�

wo/ ASPP† 3 81.8 78.3 85.3 81.3

Table 1. left: DAVIS 2016. right: DAVIS 2017. CC denotes constant cost during the inference. †
indicates YouTube-VOS is added during the training stage. ∗ denotes BL30K is added during the

training stage. For both CC and non-CC methods, the best results are highlighted in bold, while

the second best results are underlined. FPS was averaged over 3 runs.

Mobile Performance

Method Params(M)
FPS

NVIDIA A40

FPS

NVIDIA 1080Ti

short long (10×) short long (10×)

STM 38.9 8.9 4.3 6.8 7

GSFM 67.0 18.4 4.2 7.6 7

STCN 54.4 37.4 8.3 18.1 7

RDE-VOS 64.0 32.0 34.2 14.4 14.1

XMem 62.2 38.6 39.9 12.6 12.7

MobileVOS

ResNet18 8.1 144.7 145.4 76.0 76.3

MobileNetV2 2.5 99.9 99.1 61.6 60.6

�

wo/ ASPP 1.9 105.1 103.4 66.8 67.4

Table 2. Our models are the first to attain real-time performance on both server-grade and

consumer-grade GPUs for both long and short video sequences.
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Figure 2. Runtimes of our proposed models with different memory queue lengths were evaluated

on a Samsung Galaxy S22 GPU. The line with H markers is the MobileNetV2 wo/ ASPP, N
markers is the MobileNetV2, while � markers are for the Resnet18. The table shows J &F on the

DAVIS 2016 validation set for MobileNetV2 wo/ ASPP on memory queue lengths of 1, 2 and

unbounded.
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